找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
光伏发电技术 储能系统 GaN器件 ★ 5.0

HiGN-ARec:一种用于空间层级光伏功率预测的自适应协调分层图网络

HiGN-ARec: A Hierarchical Graph Network with Adaptive Reconciliation for PV Power Forecasting in Spatial Hierarchy

Yanru Yang · Ping Wang · Shaolong Shu · Feng Lin · IEEE Transactions on Sustainable Energy · 2025年8月

在具有层级结构的电网中,光伏(PV)功率预测至关重要。本文提出一种端到端深度网络HiGN-ARec,可同时预测各层级的光伏功率。该模型包含基础预测与协调两部分:基础预测部分结合先进的时空模块与跨层级交互模块,充分挖掘层级内与层级间信息;协调部分引入可学习的协调矩阵P和聚合矩阵S,以实现预测结果的动态调整与层级一致性约束。实验基于美国国家可再生能源实验室(NREL)的合成数据验证了方法的有效性,结果表明所提方法优于现有对比方法。

解读: 该分层图网络光伏功率预测技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。其层级化预测架构可直接应用于分布式光伏电站的多层级功率管理:从单台SG逆变器到汇流箱、再到区域电站的全链条预测。自适应协调机制能确保各层级预测一致性,可优化PowerTitan储能系统的充放...

风电变流技术 储能系统 深度学习 ★ 5.0

基于OWT-STGradRAM的超短期时空风速预测

Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM

Feihu Hu · Xuan Feng · Huaiwen Xu · Xinhao Liang 等5人 · IEEE Transactions on Sustainable Energy · 2025年2月

考虑风电场中风机站点的方向与距离特征有助于提升风电功率预测精度。本文提出一种基于正交风向变换时空梯度回归激活映射(OWT-STGrad-RAM)的深度学习时空预测方法。该模型将风电场编码为图像,各风机作为图像中的点,通过时空融合卷积网络集成风速、温度和气压等多源数据进行特征融合与预训练,构建特征数据集。利用OWT消除不同主导风向的影响,结合STGrad-RAM刻画风机节点间的方位与距离关系,增强空间特征的可解释性,并用于风速预测。实验结果表明,所提方法在预测精度上显著优于对比模型。

解读: 该风速预测技术对阳光电源的储能和风电产品具有重要应用价值。OWT-STGradRAM模型通过深度学习实现的高精度风速预测,可优化ST系列储能变流器的调度策略和PowerTitan储能系统的容量配置。在风电场应用中,该技术可提升风电并网点功率预测精度,有助于改进储能系统的功率平滑控制和调频调峰性能。模...