找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 储能系统 模型预测控制MPC 多物理场耦合 ★ 5.0

考虑尾流延迟特性的海上风电场LPV模型预测控制

LPV Model Predictive Control for Offshore Wind Farms Considering Wake Delay Characteristics

Yang Liu · Jiahao Lin · Ling-ling Huang · Cheng Hua 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

大规模海上风电场中显著的尾流效应要求充分考虑其延迟特性,而该特性在控制中常被忽视。针对尾流动态演化与风机控制模型参数变化之间的耦合问题,本文提出一种考虑尾流延迟特性的线性参数可变(LPV)模型预测控制方法。通过构建准稳态尾流模型,将尾流延迟特性融入风电场LPV模型,并结合两阶段降维策略简化计算,协同优化疲劳损伤均衡与发电量提升。16台风机的仿真结果表明,所建模型能准确描述尾流延迟的空间分布,所提控制方法在风速风向动态变化下有效捕捉机组间风速延迟与波动特性,显著提高发电量并降低疲劳应力,且相比静态...

解读: 该研究的尾流延迟LPV模型预测控制技术对阳光电源的储能和风电产品具有重要参考价值。首先,其动态建模方法可优化ST系列储能变流器的功率预测算法,提升大型储能电站的调度效率。其次,文中的疲劳损伤均衡策略可应用于PowerTitan系统的电池管理,延长储能设备寿命。此外,该控制方法在处理多设备耦合方面的创...

光伏发电技术 储能系统 MPPT 机器学习 ★ 5.0

一种基于机器学习的光伏系统在复杂局部遮阴条件下的全局最大功率点跟踪技术

A Machine Learning-Based Global Maximum Power Point Tracking Technique for a Photovoltaic Generation System Under Complicated Partially Shaded Conditions

Yi-Hua Liu · Yu-Shan Cheng · Yu-Chih Huang · IEEE Transactions on Sustainable Energy · 2024年12月

在局部遮阴条件下,光伏系统输出功率与电压关系呈多峰特性,导致全局最大功率点(GMPP)追踪困难。本文提出一种基于机器学习的两阶段GMPPT方法:第一阶段采用回归树预测GMPP大致位置,第二阶段利用α-扰动观察法精确捕获GMPP。通过建立仿真平台生成训练数据,优化并集成回归树模型。在252种遮阴模式下,平均跟踪损耗为2.13 W,平均响应时间0.11秒,准确识别出244种情况下的GMPP区间。实验结果表明,该方法在追踪精度和速度上均优于五种先进方法。

解读: 该机器学习GMPPT技术对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要应用价值。当前SG逆变器在复杂遮阴场景下的多峰功率曲线处理仍依赖传统扰动观察法,易陷入局部最优。该研究提出的回归树+α-扰动观察两阶段方法,可将平均响应时间缩短至0.11秒,跟踪损耗降至2.13W,显著优于现有方案。建议将...