找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 储能系统 深度学习 ★ 5.0

极端天气下的风电功率预测:一种新型少样本学习架构

Wind Power Forecasting Under Extreme Weather: a Novel Few-Shot Learning Architecture

Chuanyu Xu · Shichang Cui · Lishen Wei · Bangxian Zhu 等6人 · IEEE Transactions on Sustainable Energy · 2025年8月

针对极端天气下基于神经网络的风电功率预测面临的样本稀缺、常规与极端天气间领域偏移及跨极端条件泛化困难等问题,提出一种新型少样本学习架构。通过引入跨任务元训练的迁移学习策略,降低对样本量的需求并提升跨域泛化能力;设计轻量级参数层以平衡浅层与深层网络的欠拟合与过拟合问题,减少可训练参数并缓解分布偏移;构建跨域风险最小化损失函数,利用二阶梯度提升模型在多样极端条件下的鲁棒性与一致性。基于真实风电场数据的实验表明,该方法显著优于基准模型,在nRMSE和nMAE指标上分别降低2.05%–43.55%和0....

解读: 该少样本学习架构对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升储能系统在极端天气下的调度效率。其次可集成到iSolarCloud平台,增强风储联合运行的智能预测能力。该技术的跨域迁移学习策略和轻量级参数设计,可优化阳光电源现有的电力预测算法,提...

风电变流技术 储能系统 可靠性分析 ★ 5.0

基于过渡天气识别与气象预测误差传播的两阶段超短期风电功率预测方法

A Two-Stage Ultra-Short-Term Wind Power Forecasting Method Based on Transitional Weather Identification and Meteorological Prediction Error Propagation

Wei Zhang · Hang Sun · Jiyuan Gao · Gangui Yan 等5人 · IEEE Transactions on Sustainable Energy · 2025年7月

精确的风电功率预测对电力系统安全经济运行至关重要。然而,在过渡天气条件下,风速等气象变量的预测误差增大,导致输入噪声增加,降低预测模型可靠性。本文分析气象输入变量的误差传播机制,提出一种提升过渡天气下短期风电预测精度的策略。首先通过多维气象变量波动特征识别过渡天气时段,进而构建稀疏变分高斯过程(SVGP)与含噪输入高斯过程(NIGP)相结合的两阶段模型,将含噪输入分解为真实数据与噪声并独立建模。通过考虑输入噪声在风电预测中的传播过程并进行修正,SVGP-NIGP模型显著提高了确定性预测精度与区间...

解读: 该风电预测方法对阳光电源储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器中,可将SVGP-NIGP预测模型集成到控制算法中,提升系统在过渡天气下的调度精度。通过对气象预测误差的量化与修正,可优化PowerTitan储能系统的充放电策略,提高新能源-储能联合运行效率。该技术还可...