找到 2 条结果 · IEEE Transactions on Power Systems

排序:
储能系统技术 储能系统 ★ 5.0

基于谱阻抗的概率化宽频振荡稳定性分析与可视化

Spectral Impedance-Based Probabilistic Wideband Oscillatory Stability Analysis and Visualization

Qifan Chen · Siqi Bu · Xin Zhang · Shijun Yi 等5人 · IEEE Transactions on Power Systems · 2024年7月

概率化振荡稳定性分析(POSA)是评估含不确定性电力系统振荡失稳风险的重要工具。传统基于特征值的POSA主要关注特定低频点的振荡,难以有效识别宽频振荡风险。为此,本文提出一种基于谱阻抗的POSA方法,结合累积量法与新兴的频率响应梯度阻抗稳定性判据(FRGISC)。首先建模风速等不确定变量的概率分布,再获取系统在特定运行点的谱阻抗,并利用FRGISC计算阻抗稳定裕度,避免特征值求解。随后通过累积量法推导裕度与振荡频率的概率密度函数和累积分布函数。最后提出综合累积分布曲线谱图,实现宽频振荡风险与失稳...

解读: 该基于谱阻抗的概率化宽频振荡稳定性分析技术对阳光电源储能与新能源并网产品具有重要应用价值。针对ST系列储能变流器和PowerTitan大型储能系统,该方法可有效评估风光储混合系统中宽频振荡风险(2-50Hz及以上),避免传统特征值法的计算复杂性。频率响应梯度阻抗稳定性判据(FRGISC)可直接集成到...

储能系统技术 储能系统 深度学习 ★ 4.0

多任务图自适应学习在澳大利亚国家电力市场多元电价短期预测中的应用

Multi-Task Graph Adaptive Learning for Multivariate Electricity Price Short-Term Forecasting in Australia's National Electricity Market

Yi Li · Chaojie Li · Guo Chen · Xiaojun Zhou 等5人 · IEEE Transactions on Power Systems · 2024年4月

准确的电价短期预测对电力市场数字化至关重要。然而,可再生能源扩张与用电需求增长导致电价波动加剧,预测难度加大。供需不平衡的不确定性及电力市场的时空关联性是精准预测的主要障碍。本文提出一种多任务学习模型MGAAL,结合图注意力机制,并引入异常价格尖峰预测的辅助任务,提升泛化能力并降低过拟合风险。MGAAL采用基于注意力的图神经网络捕捉电力时空流动动态,并通过同方差不确定性和梯度归一化自适应调整任务权重。基于澳大利亚国家电力市场数据的实验表明,该模型性能优于当前先进方法。

解读: 该多任务图自适应学习电价预测技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统和ST系列储能变流器的能量管理策略中,精准的电价短期预测可优化充放电调度决策,通过峰谷套利提升收益。其图神经网络捕捉时空关联的方法可集成至iSolarCloud云平台,实现多站点储能协同优化。异常价...