找到 2 条结果 · IEEE Transactions on Power Systems

排序:
风电变流技术 深度学习 ★ 5.0

基于特征谱与扩张因果卷积及Squeeze-Excitation ShuffleNet轻量级深度学习的区域风电场日前低功率输出事件预测

Prediction of Day-Ahead Low-Power Output Events in Regional Wind Farms Using Feature Spectrums with Dilated Causal Convolution and Squeeze-Excitation ShuffleNet Lightweight Deep Learning

Zimin Yang · Xiaosheng Peng · Xiaobin Zhang · Guoyuan Qin 等6人 · IEEE Transactions on Power Systems · 2025年5月

区域风电场低功率输出事件的准确预测对电力系统的电网调度至关重要。然而,传统的风电预测方法主要侧重于提高整体预测精度,因此很少单独讨论风电低功率输出事件。本文提出了一种创新的区域风电场日前低功率输出事件预测方法,该方法利用特征频谱,结合扩张因果卷积(DCC)和挤压 - 激励(SE)改进的ShuffleNet网络。首先,将时间序列区域特征转换为频谱图像,在特征创建和选择后,引入并讨论了三种可能的特征排列方式。其次,提出了DCC - SE - ShuffleNet轻量级深度学习神经网络作为低功率输出事...

解读: 该研究的深度学习预测方法对阳光电源的新能源发电及储能产品具有重要应用价值。特征谱分析与轻量级深度学习模型可集成到ST系列储能变流器和SG系列光伏逆变器的控制系统中,提升功率预测精度。具体应用包括:(1)优化储能系统的充放电调度策略,提高PowerTitan等大型储能系统的经济性;(2)改进光伏/风电...

储能系统技术 储能系统 SiC器件 ★ 5.0

基于典范多线性分解的无参数交流状态估计虚假数据注入攻击方法

Parameter-Free False Data Injection Attack Against AC State Estimation: A Canonical Polyadic Decomposition Based Approach

Haosen Yang · Wenjie Zhang · Zipeng Liang · Ziqiang Wang 等6人 · IEEE Transactions on Power Systems · 2024年9月

随着现代电力系统向信息物理系统发展,虚假数据注入攻击(FDIA)等新型威胁日益突出。本文提出一种无需系统参数信息的AC状态估计FDIA新方法。通过将非线性AC模型表示为张量形式,并利用测量数据构建对角张量,采用典范多线性(CP)分解提取其横向列空间,实现隐蔽攻击。该方法未对AC模型做线性化简化,更贴合实际电网特性,易于规避坏数据检测。即使仅有部分传感器数据可用,方法仍具适应性。仿真验证了其有效性与优势。

解读: 该无参数FDIA攻击研究对阳光电源储能及光伏系统的信息安全防护具有重要警示价值。针对ST系列储能变流器和PowerTitan大型储能系统,该研究揭示的基于张量分解的隐蔽攻击手段,提示需在iSolarCloud云平台的状态估计模块中强化坏数据检测算法,特别是针对AC模型非线性特性的防护。建议在构网型G...