找到 2 条结果 · IEEE Transactions on Industrial Electronics
基于Adaline神经网络的数据使能有限状态预测控制用于电力变换器
Data-Enabled Finite State Predictive Control for Power Converters via Adaline Neural Network
Wenjie Wu · Lin Qiu · Xing Liu · Jien Ma 等6人 · IEEE Transactions on Industrial Electronics · 2024年8月
有限控制集模型预测控制(FCS-MPC)在电力变换器与电机驱动中展现出良好前景,但受限于模型依赖性。本文从动态建模角度提出一种数据使能的有限集预测控制方案。采用动态线性化数据模型在各运行点等效重构系统,并通过自适应线性神经网络在线更新时变参数,提升建模精度与实现性能。同时提出一种改进的无电容电压平衡方法以调节中点电位。由于负载电流与电容电压的无参数预测仅依赖系统输入输出测量及历史数据,有效规避了参数变化带来的不利影响。通过在三电平中点钳位逆变器上的仿真与实验验证了所提方法的优越性。
解读: 该数据驱动的有限集预测控制技术对阳光电源ST系列储能变流器和SG光伏逆变器的三电平拓扑控制具有重要应用价值。通过Adaline神经网络实现无参数化预测控制,可有效解决储能系统在宽工况运行时的参数漂移问题,提升PowerTitan大型储能系统在温度变化、器件老化等复杂工况下的控制鲁棒性。改进的中点电位...
功率变换器的FCS-MPC:一种事件驱动的脑情绪学习方法
FCS-MPC of Power Converters: An Event-Driven Brain Emotional Learning Approach
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Industrial Electronics · 2024年8月
针对系统不确定性与低开关频率(SF)下的有限控制集模型预测控制(FCS-MPC)框架,本文提出一种事件驱动的脑情绪在线学习方法。该方法包含三个关键特征:采用双向模糊脑情绪在线学习机制并结合鲁棒控制项以逼近理想控制器;引入基于事件驱动的管状模型预测控制机制实现低SF运行;加入积分误差项以提升低SF下的跟踪性能。所提方法无需权重因子即可有效抑制不确定性、降低开关频率并减小跟踪误差,并给出了闭环系统的收敛性分析。通过多个文献中的基准实例验证了其有效性。
解读: 该事件驱动FCS-MPC技术对阳光电源多条产品线具有重要应用价值。在ST储能变流器中,低开关频率运行可直接降低SiC/GaN功率器件的开关损耗,提升系统效率;无权重因子设计简化了多目标控制参数整定难度。在SG光伏逆变器的MPPT控制中,脑情绪学习机制可增强参数摄动与电网扰动下的鲁棒性。在电动汽车驱动...