← 返回
电动汽车驱动 模型预测控制MPC ★ 5.0

功率变换器的FCS-MPC:一种事件驱动的脑情绪学习方法

FCS-MPC of Power Converters: An Event-Driven Brain Emotional Learning Approach

作者 Xing Liu · Lin Qiu · Youtong Fang · Kui Wang · Yongdong Li · Jose Rodríguez
期刊 IEEE Transactions on Industrial Electronics
出版日期 2024年8月
技术分类 电动汽车驱动
技术标签 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 事件驱动 大脑情感在线学习 有限控制集模型预测控制 低开关频率 跟踪性能
语言:

中文摘要

针对系统不确定性与低开关频率(SF)下的有限控制集模型预测控制(FCS-MPC)框架,本文提出一种事件驱动的脑情绪在线学习方法。该方法包含三个关键特征:采用双向模糊脑情绪在线学习机制并结合鲁棒控制项以逼近理想控制器;引入基于事件驱动的管状模型预测控制机制实现低SF运行;加入积分误差项以提升低SF下的跟踪性能。所提方法无需权重因子即可有效抑制不确定性、降低开关频率并减小跟踪误差,并给出了闭环系统的收敛性分析。通过多个文献中的基准实例验证了其有效性。

English Abstract

This study is concerned with an event-driven brain emotional online learning approach for finite control-set model predictive control (FCS-MPC) framework subject to system uncertainties and low switching frequency (SF). The developed framework consists of three key features: First, a bidirectional fuzzy brain emotional online learning approach along with a robustifying control term is leveraged to approximate the ideal controller; second, an event-driven-based mechanism that achieves the low SF operation by using a tube-like model predictive control point of view is embedded into the proposal; and third, an integral error term is introduced so as to enhance the tracking performance under low SF operation. Our method contributes to better attenuate capability of uncertainties and SF as well as tracking error without weighting factors. Further, the convergence analysis of the closed-loop control system is given. Finally, we underline its merits with different benchmark examples from the literature.
S

SunView 深度解读

该事件驱动FCS-MPC技术对阳光电源多条产品线具有重要应用价值。在ST储能变流器中,低开关频率运行可直接降低SiC/GaN功率器件的开关损耗,提升系统效率;无权重因子设计简化了多目标控制参数整定难度。在SG光伏逆变器的MPPT控制中,脑情绪学习机制可增强参数摄动与电网扰动下的鲁棒性。在电动汽车驱动与OBC充电机中,事件驱动机制可在保证电流跟踪精度前提下降低开关频率,减少EMI滤波器体积。该方法的收敛性理论分析为构网型GFM控制器的稳定性设计提供新思路,积分误差补偿策略可改善低开关频率下的稳态精度,适用于大功率PowerTitan储能系统的损耗优化设计。