找到 7 条结果 · IEEE Transactions on Industrial Electronics
基于斯塔克尔伯格博弈的软演员评论家-深度强化学习方法用于锂离子电池及冷却系统的快速充电管理
Fast Charging Management of a Lithium-Ion Battery and Cooling System: A Stackelberg Game-Based Soft Actor Critic−Deep Reinforcement Learning Method
Hongrong Yang · Quanyi Chen · Xiaoying Shi · Yinliang Xu 等5人 · IEEE Transactions on Industrial Electronics · 2025年5月
本文提出了一种针对锂离子电池和冷却系统的快速充电管理策略,旨在解决在多种物理约束条件下实现快速充电,同时将冷却能耗和电池老化降至最低的难题。将电池与冷却系统之间的复杂耦合关系构建为基于斯塔克尔伯格博弈的双层优化框架,以反映充电和冷却过程的顺序交互。为此,开发了一种基于斯塔克尔伯格博弈的软演员 - 评论家深度强化学习方法,并对其收敛性进行了严格证明,确保了该方法的可靠性。大量实验结果验证了该方法的有效性,表明其优于现有先进策略,包括单智能体深度强化学习、贝叶斯方法以及恒流 - 恒压(CCCV) -...
解读: 从阳光电源的业务视角来看,这项基于Stackelberg博弈和深度强化学习的快充管理技术具有重要的战略价值。该技术通过将电池充电与热管理系统的耦合关系建模为双层优化框架,实现了充电速度、能耗控制和电池寿命之间的动态平衡,这与我司储能系统的核心技术需求高度契合。 在储能业务层面,该技术可直接应用于我...
计算高效的长时域预测控制在电力变换器中的应用:一种强化学习方法
Computationally Efficient Long-Horizon Predictive Control for Power Converter: A Reinforcement Learning Approach
Yihao Wan · Yang Zhang · Qianwen Xu · IEEE Transactions on Industrial Electronics · 2025年4月
长预测时域有限控制集模型预测控制(FCS - MPC)在闭环稳定性、谐波失真和开关频率方面表现出卓越的性能。然而,对于传统的穷举法,实际实施时的计算负担会随着预测时域的增加呈指数级增长。传统方法包括将其重新表述为整数最小二乘(ILS)问题,以及采用基于人工神经网络(ANN)的有监督模仿学习技术,以减轻长预测时域带来的计算负担问题。在本文中,通过将强化学习(RL)框架与长预测时域相结合,开发了一种新型自主控制器用于变流器控制。通过这种方式,RL智能体通过与变流器系统进行交互,自主学习最优开关策略。...
解读: 从阳光电源的业务视角来看,这项基于强化学习的长预测时域模型预测控制技术具有重要的战略价值。该技术针对功率变换器控制中的核心痛点——长预测时域带来的计算复杂度问题,提出了创新性解决方案,这与我们在光伏逆变器和储能变流器产品中追求高性能控制的需求高度契合。 技术价值方面,长预测时域控制能够显著改善闭环...
基于稳定性的强化学习控制在电力电子变换器中的应用:一种李雅普诺夫方法
Stability-Guided Reinforcement Learning Control for Power Converters: A Lyapunov Approach
Yihao Wan · Qianwen Xu · IEEE Transactions on Industrial Electronics · 2025年1月
强化学习(RL)因其处理非线性和自学习能力而在电力电子领域受到关注。合理配置下,RL智能体可通过与变换器系统交互自主学习最优控制策略。类似于传统的有限控制集模型预测控制(FCS-MPC),RL可学习最优开关策略并实现良好控制性能。然而,RL控制器改变闭环动态特性,给系统稳定性保障与评估带来挑战。为此,本文提出构造李雅普诺夫函数以引导智能体在提升控制性能的同时确保闭环稳定性,并通过推导电压控制误差收敛的紧致集量化系统的实用稳定域。最后,在实验平台上验证了所提方法的有效性,仿真与实验结果均表明该方法...
解读: 该李雅普诺夫引导的强化学习控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。相比传统FCS-MPC,该方法通过李雅普诺夫函数保障闭环稳定性,同时利用RL自学习能力优化开关策略,可显著提升储能变流器在复杂工况下的动态响应和鲁棒性。技术可直接应用于构网型GFM控制器...
基于强化学习的电力电子变换器预测控制
Reinforcement Learning-Based Predictive Control for Power Electronic Converters
Yihao Wan · Qianwen Xu · Tomislav Dragičević · IEEE Transactions on Industrial Electronics · 2024年10月
有限集模型预测控制(FS - MPC)似乎是一种很有前景且有效的电力电子变换器控制方法。传统的有限集模型预测控制存在权重因子选择耗时的问题,这会显著影响控制性能。有限集模型预测控制面临的另一个持续挑战是,要获得理想的控制性能,它依赖于预测模型。为克服上述问题,我们提议将强化学习(RL)应用于电力变换器的有限集模型预测控制。首先,采用强化学习算法对有限集模型预测控制进行自动权重因子设计,旨在最小化总谐波失真(THD)或降低平均开关频率。此外,通过用预测算法的成本函数为强化学习智能体制定激励机制,该...
解读: 从阳光电源的业务视角来看,这项基于强化学习的预测控制技术对我们的核心产品线具有重要战略价值。该技术针对有限集模型预测控制(FS-MPC)的两大痛点提出了创新解决方案,这与我们在光伏逆变器和储能变流器领域追求高效率、高可靠性的目标高度契合。 在实际应用层面,该技术的自动权重因子设计功能可显著缩短我们...
基于神经网络预测器与软演员-评论家算法的电力电子变换器预测控制方法
A Predictive Control Method Based on Neural Predictor and Soft Actor–Critic for Power Converters
Chenghao Liu · Jien Ma · Xing Liu · Lin Qiu 等6人 · IEEE Transactions on Industrial Electronics · 2024年10月
本文着重于将软强化学习(RL)技术引入有限控制集模型预测控制(FCS - MPC)框架,以提升鲁棒性能。更确切地说,在神经预测器的基础上,开发了一个使用软演员 - 评论家算法训练的智能体,用于探索嵌入在MPC框架内的最优控制输入。同时,在训练过程中引入了基于李雅普诺夫函数的约束条件,并给出了相应的权重更新法则。此外,所提出的方法保证了集成了RL智能体的系统的稳定性。最后,仿真和实验结果均验证了该方法相较于现有FCS - MPC方法的优越性。
解读: 从阳光电源的核心业务视角来看,这项基于软强化学习的预测控制技术具有重要的战略价值。该方法将软演员-评论家算法与有限集模型预测控制相结合,通过神经网络预测器实现智能决策,这与我们在光伏逆变器和储能变流器中广泛应用的MPC控制策略形成了技术演进路径。 对于阳光电源的产品线,该技术的核心价值体现在三个层...
基于奇异摄动理论与自适应动态规划的强化学习稳定现代交直流电网中并网电压源变换器直流侧动态特性
Reinforcement Learning to Stabilize Singularly Perturbed DC-Side Dynamics of Grid-Connected Voltage-Source Converters in Modern AC–DC Grids Using Singular Perturbation Theory and Adaptive Dynamic Programming
Masoud Davari · Jianguo Zhao · Chunyu Yang · Weinan Gao 等5人 · IEEE Transactions on Industrial Electronics · 2024年9月
电网现代化进程中交直流系统的稳定性和性能在很大程度上依赖于并网电压源换流器(GC - VSC)的整流模式。作为系统的核心,其影响十分显著。基于脉宽调制方法的级联控制的电流控制型GC - VSC在智能电网范式中应用广泛。本文探讨了在现代交直流电网中,此类GC - VSC控制结构所引发的动态特性如何被视为奇异摄动系统。为此,本文借助自适应(或近似)动态规划方法和奇异摄动理论(SPT),提出了一种基于强化学习(RL)的、针对具有不确定动态特性的电压控制问题的新型最优控制策略。首先,利用SPT将原最优控...
解读: 从阳光电源的业务视角来看,这项基于强化学习和奇异摄动理论的并网变流器控制技术具有重要的战略价值。该技术直接针对当前级联控制结构中的多时间尺度动态问题,这与我司光伏逆变器和储能变流器面临的核心技术挑战高度契合。 在技术价值层面,该方法通过奇异摄动理论将复杂的全阶系统分解为快慢子系统,有效规避了数值刚...
基于吸引力增强型强化学习的去中心化多机器人鱼协同捕食控制
Decentralized Multirobotic Fish Pursuit Control With Attraction-Enhanced Reinforcement Learning
Yukai Feng · Zhengxing Wu · Jian Wang · Junwen Gu 等6人 · IEEE Transactions on Industrial Electronics · 2025年1月
自适应且高效的协同控制对多机器人鱼系统至关重要,可显著提升其在复杂水下任务中的表现。本文提出一种专为多机器人鱼协同追捕设计的新型自适应算法,融合吸引力机制与强化学习技术,使机器人鱼能依据局部观测与环境线索做出自适应决策。针对机器人鱼的独特动力学特性构建了状态转移环境,并结合课程学习方法设计了去中心化的追捕策略。仿真与实物实验验证了该策略的有效性与适应性,为复杂水下环境中多机器人鱼系统的协同控制提供了重要参考。
解读: 该去中心化多智能体协同控制技术对阳光电源分布式储能系统具有重要借鉴价值。文中的吸引力增强型强化学习算法可应用于PowerTitan大型储能系统的多模块协同控制,实现基于局部观测的自适应功率分配与负载均衡。去中心化决策架构可提升ST系列储能变流器集群的容错性与可扩展性,避免单点故障。课程学习方法可优化...