找到 2 条结果 · IEEE Access

排序:
光伏发电技术 储能系统 微电网 强化学习 ★ 4.0

通过结合负荷与光伏预测的迁移学习提升基于强化学习的能量管理

Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting

Chang Xu · Masahiro Inuiguchi · Naoki Hayashi · Wong Jee Keen Raymond 等6人 · IEEE Access · 2025年1月

在可再生能源微电网中,高效能量管理对维持系统稳定性和降低运行成本至关重要。传统强化学习(RL)控制器常面临训练时间长和过程不稳定等问题。本研究提出一种融合迁移学习(TL)技术的新型RL方法,利用ResNet18+BiLSTM等先进预测模型生成的合成数据对RL智能体进行预训练,嵌入领域知识以提升性能。基于一年运行数据的实验结果表明,相较于基线模型,TL增强的RL控制器累计运行成本最高降低62.63%,系统不平衡度改善达80%,并显著提升初始性能与训练效率。该方法展现了TL与RL结合在复杂电力系统实...

解读: 该迁移学习增强的强化学习能量管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究中的ResNet18+BiLSTM预测模型可集成至iSolarCloud云平台,提升光伏-储能微电网的实时调度能力。62.63%的成本降低和80%的系统不平衡改善直接契合阳光电源ESS...

储能系统技术 储能系统 故障诊断 ★ 4.0

人工智能和数字孪生在电力系统中的应用综述

The Applications of Artificial Intelligence and Digital Twin in Power Systems: An In-Depth Review

Ghazal Rahmani-Sane · Sasan Azad · Mohammad Taghi Ameli · Sasan Haghani · IEEE Access · 2025年1月

本文首次全面综述电力系统中各类AI技术,涵盖负荷预测、安全评估、电压稳定性评估、切负荷、虚假数据注入攻击检测、状态估计与定位、故障检测定位、电能质量扰动检测等应用。针对AI实际应用挑战,引入两大工具:迁移学习与AI算法的战略结合,以及数字孪生技术的利用。这些方法的整合显著提升AI模型性能和准确性,为充分利用AI能力、推进可持续能源未来提供基础知识。

解读: 该AI综述对阳光电源智慧能源平台建设具有战略指导意义。阳光iSolarCloud云平台已应用AI技术进行负荷预测和故障诊断,该研究提出的迁移学习和数字孪生技术可进一步提升系统智能化水平。阳光可构建储能和光伏电站的数字孪生模型,实现精准预测性维护,降低运维成本15-20%,提升电站全生命周期收益。...