找到 2 条结果 · Applied Energy

排序:
储能系统技术 储能系统 ★ 5.0

锂离子电池建模研究综述与展望:当前研究的深入分析与未来发展方向

A comprehensive review of lithium-ion battery modelling research and prospects: in-depth analysis of current research and future directions

Bowen Zheng · Zhichao Dengd · Zhenhao Luo · Shuoyuan Mao 等14人 · Applied Energy · 2025年1月 · Vol.401

摘要 随着全球能源转型与低碳技术的快速发展,锂离子电池作为核心储能单元,其性能提升与安全管理高度依赖于精确的电池建模。电池建模经历了从机理驱动到数据驱动、从单尺度到多尺度融合的发展过程,形成了三大主流技术体系:其一,基于Thevenin框架的等效电路模型(ECM),利用RC网络拟合电池外部特性,通过引入迟滞模块并结合遗传算法优化,可在电池管理系统(BMS)实时控制中实现毫秒级响应,展现出显著的工程应用优势;然而,其建模逻辑局限于端口特性,缺乏对深层物理机制的解释能力。其二,基于多孔电极理论和偏微...

解读: 该锂电池建模综述对阳光电源储能系统具有重要指导意义。等效电路模型可直接应用于ST系列PCS的BMS实时控制,实现毫秒级SOC估算;物理场模型支撑PowerTitan电池包热管理优化和材料选型;数据驱动模型可融入iSolarCloud平台,提升储能电站全生命周期预测性维护能力。多尺度混合建模思路为阳光...

光伏发电技术 强化学习 ★ 5.0

基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制

Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning

Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng 等5人 · Applied Energy · 2025年1月 · Vol.379

摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器...

解读: 该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有M...