找到 4 条结果 · Applied Energy
基于精细化多状态建模的电池储能系统可靠性指标与评估
Refined multi-state modeling based battery energy storage system reliability indicators and evaluation
Xiaohe Yan · Jialiang Li · Nian Liu · Applied Energy · 2025年1月 · Vol.393
准确评估电池储能系统(BESS)的可靠性对于提高其运行效率、延长使用寿命以及降低维护成本具有重要意义。可靠性指标是实现BESS可靠性评估的关键环节。然而,当前的可靠性指标大多从BESS的整体角度出发进行设定,忽略了内部电池性能的退化过程,难以适用于大容量、多单元、拓扑结构复杂的BESS。因此,本文提出了一种基于BESS精细化多状态模型的可靠性指标体系及综合评价方法。首先,考虑电池单体的性能衰减,建立了基于电池单体健康状态(SOH)的多状态模型,并通过算子分裂的递归通用生成函数(UGF)方法将其扩...
解读: 该电池储能系统多状态可靠性建模技术对阳光电源ST系列PCS及PowerTitan储能解决方案具有重要应用价值。论文提出的基于电芯SOH的精细化多状态模型和'良好-衰减-风险-缺陷-故障'五级分类体系,可直接应用于阳光电源大容量储能系统的健康管理。结合iSolarCloud平台的预测性维护功能,该可靠...
一种用于风力涡轮机应用中精确预测三维时空风场的新型频域物理信息神经网络
A novel frequency-domain physics-informed neural network for accurate prediction of 3D spatio-temporal wind fields in wind turbine applications
Shaopeng Li · Xin Li · Yan Jiang · Qingshan Yang 等7人 · Applied Energy · 2025年1月 · Vol.386
摘要 风能是全球关键的清洁能源之一。风力涡轮机的结构安全性和动力响应分析在很大程度上受到其所在位置风速数据可获得性与精度的影响。然而,气象观测站分布稀疏,通常难以获取高分辨率的空间风速数据,因此需要采用条件模拟方法来补充低分辨率的观测数据。本研究针对这一挑战,提出了一种频域物理信息神经网络(FD-PINN),该方法利用频域信息,旨在实现对风力涡轮机三维(3D)时空风场的精准预测。该方法构建了一个深度神经网络,并将其与关键物理模型相结合,包括风谱、风场相干函数以及风速廓线。通过融合这些物理先验知识...
解读: 该频域物理信息神经网络技术对阳光电源风电变流器及新能源场站具有重要价值。通过高精度3D时空风场预测,可优化SG系列风电变流器的功率预测算法和主动抗扰控制策略,提升MPPT效率。结合iSolarCloud平台,该深度学习方法可增强风光储混合电站的预测性维护能力,优化储能系统ST系列PCS的充放电策略。...
基于门控循环单元神经网络利用稀疏监测数据的车载超级电容器储能系统寿命预测
Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data
Li Wei · Yu Wang · Tingrun Lin · Xuelin Huang 等5人 · Applied Energy · 2025年1月 · Vol.379
摘要 随着超级电容器在交通和能源领域的广泛应用,其服役寿命预测成为一个需要重点考虑的问题。由于车载超级电容器的老化过程与实际工况密切相关,其实际使用寿命可能与实验室测得的循环寿命不一致。然而,记录历史工作状况的车载监测数据质量较低,通常具有稀疏性和碎片化特征,导致难以提取有价值的信息。在我们前期的研究中,已成功从稀疏且碎片化的数据中获取了特征参数,但这些特征参数呈周期性变化,无法直接用于寿命预测。本文首先通过复合正弦函数与多项式时间序列分解模型,从特征参数中提取超级电容器的退化趋势项;其次,为弥...
解读: 该超级电容寿命预测技术对阳光电源储能系统和充电桩产品具有重要价值。针对车载及储能应用中监测数据稀疏问题,GRU神经网络结合时序分解模型可实现2.36%高精度预测,可直接应用于ST系列PCS和PowerTitan储能系统的健康管理。该方法通过提取特征电容、温度等退化趋势,能有效补偿iSolarClou...
面向大负载波动质子交换膜燃料电池系统的控制导向热管理策略
Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems
Yuhan Li · Zhifeng Zheng · Yangge Guo · Xiaojing Cheng 等8人 · Applied Energy · 2025年1月 · Vol.392
摘要 热管理控制对质子交换膜燃料电池(PEMFC)的性能与耐久性具有重要意义。在大负载波动工况下,由于系统具有强非线性和时变时滞特性,热管理控制面临巨大挑战。为此,本文采用串级内模控制(IMC)方法,结合电流前馈控制,以提升宽范围负载变化下的跟踪性能及对时滞扰动的鲁棒性,同时降低系统时滞影响。此外,提出了一种针对恒温器和风扇的双内环串级IMC结构,以进一步增强系统鲁棒性,并引入改进型Smith预估器以改善时滞扰动的抑制能力。首先通过阶跃响应测试和白噪声扰动测试分别评估所提出控制策略的响应速度与鲁...
解读: 该燃料电池热管理控制技术对阳光电源氢能业务拓展具有重要参考价值。文中提出的级联内模控制(IMC)与电流前馈结合策略,可应用于公司充电桩及储能系统的热管理优化,特别是ST系列PCS在大功率波动场景下的温控精度提升。双内环级联IMC与改进Smith预估器的鲁棒性设计思路,可借鉴至SG逆变器的宽温度范围运...