找到 2 条结果 · Applied Energy
基于外生变量与调优形式时间序列提示增强的大型时间序列模型的风电功率预测
Wind power prediction using foundation large time series models enhanced by time series prompt in exogenous and tuning forms
Yuwei Fan · Tao Song · Chenlong Feng · Chao Liu 等5人 · Applied Energy · 2025年1月 · Vol.400
摘要 大型时间序列模型(Large Time Series Models, LTSMs)在能源领域具有广泛的应用前景,其中时间序列分析在电力预测等多种实际下游任务中发挥着重要作用。然而,对外生变量的忽视以及全量微调方法的局限性,制约了这些模型在下游任务中的适应能力。本文提出时间序列提示(Time Series Prompt, TSP)的概念,构建了一种基于TSP的方案,将外生变量融入基础LTSM,并结合参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法...
解读: 该大型时序模型与时序提示技术对阳光电源风储系统具有重要价值。通过外生变量(风速预测)嵌入提示机制,可显著提升风电功率预测精度(MSE降低50%),结合参数高效微调进一步优化50%。该方法可直接应用于ST系列储能PCS的充放电策略优化,提升风储协同效率;集成至iSolarCloud平台实现智能预测性运...
基于深度强化学习的氢燃料电池列车能量与热管理协同优化策略
Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning
Kangrui Jiang · Zhongbei Tian · Tao Wen · Kejian Song 等6人 · Applied Energy · 2025年1月 · Vol.393
摘要 轨道交通脱碳已成为轨道交通行业未来发展的主要方向。氢燃料电池(HFC)列车因其零碳排放和较低的改造成本,成为具有竞争力的潜在解决方案。然而,由于氢气在储存、运输和利用方面面临的挑战,其成本较高,仍是制约HFC列车商业化的主要因素。温度对HFC的能量转换效率和寿命具有显著影响,其热管理要求比内燃机更为严格。现有的HFC列车能量管理系统(EMS)通常忽略了HFC温度变化对能量转换效率的影响,难以根据环境动态条件实现能量与热管理的实时平衡控制。为解决这一问题,本文提出一种基于深度强化学习(DRL...
解读: 该深度强化学习能量-热管理协同优化技术对阳光电源氢能及储能系统具有重要借鉴价值。其MDP建模与双深度Q学习算法可应用于ST系列PCS的多能源协调控制,实现电池SOC动态平衡与温控优化。该方法在充电站EV Solutions中可优化充电功率分配,降低设备热应力;在PowerTitan储能系统中可提升变...