找到 2 条结果 · Applied Energy
基于物理信息注意力残差网络的电池智能温度预警模型
Battery intelligent temperature warning model with physically-informed attention residual networks
Xue Ke · Lei Wang · Jun Wang · Anyang Wang 等12人 · Applied Energy · 2025年1月 · Vol.388
摘要 电动汽车的快速发展对锂离子电池的热安全管理提出了更高要求。传统的物理模型需要大量离线参数辨识,在计算效率与模型保真度之间难以平衡;而数据驱动方法虽然精度较高,但缺乏可解释性,且在不同工况下需要大量数据支持。为应对上述挑战,本文提出了一种物理信息引导的注意力残差网络(Physics-Informed Attention Residual Network, PIARN),该模型将改进的非线性双电容模型与热集总模型嵌入到物理引导的循环神经网络框架中,从而提升了模型的可解释性与泛化能力。所设计的残...
解读: 该物理信息引导的电池温度预警技术对阳光电源储能系统具有重要价值。PIARN模型结合物理模型与深度学习,可集成至ST系列PCS和PowerTitan储能系统的BMS热管理模块,实现0.1°C精度的在线温度预测和近100%准确率的热预警。其轻量化物理模型与残差网络架构适合边缘计算部署,可通过iSolar...
基于门控循环单元神经网络利用稀疏监测数据的车载超级电容器储能系统寿命预测
Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data
Li Wei · Yu Wang · Tingrun Lin · Xuelin Huang 等5人 · Applied Energy · 2025年1月 · Vol.379
摘要 随着超级电容器在交通和能源领域的广泛应用,其服役寿命预测成为一个需要重点考虑的问题。由于车载超级电容器的老化过程与实际工况密切相关,其实际使用寿命可能与实验室测得的循环寿命不一致。然而,记录历史工作状况的车载监测数据质量较低,通常具有稀疏性和碎片化特征,导致难以提取有价值的信息。在我们前期的研究中,已成功从稀疏且碎片化的数据中获取了特征参数,但这些特征参数呈周期性变化,无法直接用于寿命预测。本文首先通过复合正弦函数与多项式时间序列分解模型,从特征参数中提取超级电容器的退化趋势项;其次,为弥...
解读: 该超级电容寿命预测技术对阳光电源储能系统和充电桩产品具有重要价值。针对车载及储能应用中监测数据稀疏问题,GRU神经网络结合时序分解模型可实现2.36%高精度预测,可直接应用于ST系列PCS和PowerTitan储能系统的健康管理。该方法通过提取特征电容、温度等退化趋势,能有效补偿iSolarClou...