找到 2 条结果 · Applied Energy
异构动态数据环境下分布式光伏在线增量概率功率预测
Online incremental probability power prediction for distributed PVs in heterogeneous and dynamic data environments
Le Zhang · Ziyu Chen · Jizhong Zhu · Kaixin Lin 等5人 · Applied Energy · 2025年1月 · Vol.394
摘要 数据共享是提升小样本条件下分布式光伏发电功率数据驱动模型预测精度的标准解决方案。然而在实际应用中,由于数据的去中心化所有权以及复杂多变的外部环境,该方案面临数据隐私、数据异构性以及动态数据学习等方面的挑战。为应对这些挑战,本文提出一种基于贝叶斯随机配置网络(BSCN)与个性化联邦学习(PFL)的增量式概率预测方法。具体而言,采用随机配置网络——一种新兴的单隐层无迭代神经网络——快速构建功率预测模型;为获得后验分布并确定概率输出,引入贝叶斯推断对SCN的输出参数进行评估。针对小样本和异构数据...
解读: 该分布式光伏概率预测技术对阳光电源iSolarCloud智慧运维平台及SG系列逆变器具有重要应用价值。其联邦学习框架可保护多业主数据隐私,增量学习策略适配动态环境,可显著提升小样本场景下的功率预测精度。技术可集成至iSolarCloud平台,优化分布式光伏集群的预测性维护与功率调度;结合SG逆变器M...
一种集成实验与数值研究的竹节形流场设计下风冷式质子交换膜燃料电池性能及传热传质动力学
An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design
Kai-Qi Zhu · Quan Ding · Ben-Xi Zhang · Jiang-Hai Xu 等8人 · Applied Energy · 2025年1月 · Vol.377
摘要 风冷式质子交换膜燃料电池(PEMFC)中复杂的传热传质耦合现象以及物理场分布不均的问题,严重影响其功率密度和水热管理性能。作为关键部件,阴极流场在燃料供给、散热以及水传输方面对风冷式PEMFC起着至关重要的作用。优化流场结构设计是应对上述挑战的关键策略。本研究提出了一种创新的竹节形流场设计,并在25 cm²的单电池中进行了实验验证,结果证明该设计能有效提升风冷式PEMFC的传热传质能力与功率密度,同时降低供气能耗。此外,还建立了三维多相数值模型,用于深入探究该流场结构下液态水、反应物和热量...
解读: 该燃料电池热质传输优化技术对阳光电源氢能业务具有重要借鉴价值。竹节型流场设计通过分段加速和涡流区优化实现5.45%功率密度提升和4.17%能效增益,其多物理场耦合仿真方法可应用于公司储能PCS的热管理优化。研究中的熵分析法和非均匀流场设计理念,可迁移至SiC功率器件散热结构设计,提升ST系列PCS和...