← 返回
光伏发电技术
★ 5.0
异构动态数据环境下分布式光伏在线增量概率功率预测
Online incremental probability power prediction for distributed PVs in heterogeneous and dynamic data environments
| 作者 | Le Zhang · Ziyu Chen · Jizhong Zhu · Kaixin Lin · Linying Huang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 394 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Probabilistic PV power prediction using Bayesian stochastic configuration network. |
语言:
中文摘要
摘要 数据共享是提升小样本条件下分布式光伏发电功率数据驱动模型预测精度的标准解决方案。然而在实际应用中,由于数据的去中心化所有权以及复杂多变的外部环境,该方案面临数据隐私、数据异构性以及动态数据学习等方面的挑战。为应对这些挑战,本文提出一种基于贝叶斯随机配置网络(BSCN)与个性化联邦学习(PFL)的增量式概率预测方法。具体而言,采用随机配置网络——一种新兴的单隐层无迭代神经网络——快速构建功率预测模型;为获得后验分布并确定概率输出,引入贝叶斯推断对SCN的输出参数进行评估。针对小样本和异构数据导致的性能下降问题,设计了一种新颖的PFL框架,在保护数据隐私的同时提升预测精度。技术上,服务器作为信息共享的桥梁,依据Wasserstein距离指导,以个性化方式聚合本地后验分布,尽可能融合相似特征。各客户端以服务器提供的个性化后验分布作为先验,在本地执行个性化重训练,从而在缓解数据异构性不利影响的同时,学习来自其他客户端的共享信息。此外,提出一种增量学习策略,并将其无缝嵌入PFL框架中,以在动态环境中持续学习新模式而不遗忘历史知识。基于公开数据集的大量实验结果表明,所提出的方法在小样本、异构且动态的数据条件下,相较于多种最先进的分布式光伏预测方案,展现出具有竞争力的概率预测性能。
English Abstract
Abstract Data sharing is a standard solution to improve the prediction accuracy of data-driven models for distributed photovoltaic (PV) power with small samples. Unfortunately, in practice, due to decentralized ownership and diverse, dynamic external environments, this solution suffers from challenges in data privacy, heterogeneity, and dynamic data learning. To handle these challenges, this paper proposes an incremental probabilistic prediction method based on a Bayesian stochastic configuration network (BSCN) and personalized federated learning (PFL). Concretely, a stochastic configuration network, an emerging neural network with a single hidden layer and no iteration, is used to quickly build the power predictor. Aiming to obtain the posterior distribution and determine the probabilistic output, Bayesian inference is used to evaluate the output parameters of SCN. Faced with the performance degradation caused by small samples and heterogeneous data, a novel PFL framework is designed to improve the prediction accuracy while protecting privacy. Technically, the server acts as a bridge for information sharing and aggregates local posterior distributions in a personalized manner, guided by Wasserstein distance to integrate similar features as much as possible. With the personalized posterior from the server as the prior, each client performs personalized retraining locally to mitigate the adverse effects of the data heterogeneity while learning shared information from other clients. Moreover, an incremental learning strategy is proposed and seamlessly embedded into the PFL framework to continuously learn new modes without forgetting in dynamic environments. Extensive experiment results using public datasets demonstrate that the proposed method exhibits competitive probabilistic prediction performance compared to several state-of-the-art solutions for distributed PVs in the presence of small-sample, heterogeneous, and dynamic data.
S
SunView 深度解读
该分布式光伏概率预测技术对阳光电源iSolarCloud智慧运维平台及SG系列逆变器具有重要应用价值。其联邦学习框架可保护多业主数据隐私,增量学习策略适配动态环境,可显著提升小样本场景下的功率预测精度。技术可集成至iSolarCloud平台,优化分布式光伏集群的预测性维护与功率调度;结合SG逆变器MPPT优化算法,实现更精准的发电曲线预测。贝叶斯概率输出为储能系统ST系列PCS提供不确定性量化依据,优化充放电策略,提升源网荷储协同控制能力。