找到 4 条结果 · Applied Energy

排序:
储能系统技术 储能系统 工商业光伏 ★ 5.0

基于功率型与能量型储能的混合储能系统优化调度与性能评估

Optimized scheduling and performance evaluation of hybrid energy storage systems with power-based and energy-based storage

Jiacheng Guo · Jun Chen · Hao Wuab · Jimin Zengc 等5人 · Applied Energy · 2025年1月 · Vol.395

摘要 能源转型使得混合储能系统(HESS)在工业园区中日益重要。然而,目前仍缺乏系统性的研究来回答为何应在工业园区中实施混合储能系统这一问题。本研究开发了一种集成了超级电容器、锂离子电池、热储罐和冷冻水储冷装置的混合储能系统。提出了一种结合变分模态分解与混合整数线性规划的优化调度方法,该方法充分考虑了功率型储能与能量型储能方式之间的互补特性。从长期效益和不同场景下的短期调度两个角度,对混合储能系统的性能进行了系统性分析。结果表明,与仅采用锂离子电池储能的系统相比,该混合储能系统显著减少了碳排放(...

解读: 该混合储能优化调度技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。研究验证了超级电容与锂电池混合配置在工商业场景的经济性(降本5.5%)和减碳效果(减排15.5%),可指导我司PowerTitan方案中功率型与能量型储能的容量配比优化。其基于VMD分解的混合整数线性规划调...

光伏发电技术 SiC器件 深度学习 ★ 5.0

通过神经网络方法加速钙钛矿太阳能电池的器件表征

Accelerating device characterization in perovskite solar cells via neural network approach

Xinhai Zhaoab1 · Chaopeng Huangae1 · Erik Birgersson · Nikita Suprun 等11人 · Applied Energy · 2025年1月 · Vol.392

摘要 钙钛矿太阳能电池是下一代高效光伏器件的有力候选者,尤其适合作为叠层结构中的顶部电池。基于物理机制的光电模型,我们采集了十万量级的大数据样本,用于训练神经网络模型,以高效预测器件性能和复合损耗。在数据准备、模型训练和神经网络优化过程中,分别采用了拉丁超立方采样、贝叶斯正则化和贝叶斯优化方法。最优的神经网络模型在预留的测试数据集上实现的均方误差低于4 × 10⁻⁴。神经网络的计算速度比传统光电模型快一千倍以上。因此,器件快速校准可在24秒内完成。显著降低的计算成本使得高效的器件表征、参数研究、...

解读: 该神经网络加速钙钛矿电池表征技术对阳光电源光伏逆变器产品线具有重要借鉴价值。研究采用的深度学习方法将器件仿真速度提升千倍以上,可应用于SG系列逆变器的MPPT算法优化和iSolarCloud平台的预测性维护功能。通过贝叶斯优化和敏感性分析快速标定器件参数的思路,可迁移至SiC/GaN功率器件的损耗分...

储能系统技术 SiC器件 ★ 5.0

基于物理信息注意力残差网络的电池智能温度预警模型

Battery intelligent temperature warning model with physically-informed attention residual networks

Xue Ke · Lei Wang · Jun Wang · Anyang Wang 等12人 · Applied Energy · 2025年1月 · Vol.388

摘要 电动汽车的快速发展对锂离子电池的热安全管理提出了更高要求。传统的物理模型需要大量离线参数辨识,在计算效率与模型保真度之间难以平衡;而数据驱动方法虽然精度较高,但缺乏可解释性,且在不同工况下需要大量数据支持。为应对上述挑战,本文提出了一种物理信息引导的注意力残差网络(Physics-Informed Attention Residual Network, PIARN),该模型将改进的非线性双电容模型与热集总模型嵌入到物理引导的循环神经网络框架中,从而提升了模型的可解释性与泛化能力。所设计的残...

解读: 该物理信息引导的电池温度预警技术对阳光电源储能系统具有重要价值。PIARN模型结合物理模型与深度学习,可集成至ST系列PCS和PowerTitan储能系统的BMS热管理模块,实现0.1°C精度的在线温度预测和近100%准确率的热预警。其轻量化物理模型与残差网络架构适合边缘计算部署,可通过iSolar...

储能系统技术 储能系统 强化学习 ★ 5.0

基于对抗性模仿强化学习的混合储能电动汽车能量管理

Imitation reinforcement learning energy management for electric vehicles with hybrid energy storage system

Weirong Liu · Pengfei Yao · Yue Wu · Lijun Duan 等6人 · Applied Energy · 2025年1月 · Vol.378

深度强化学习已成为电动汽车能量管理的一种有前景的方法。然而,深度强化学习依赖大量试错训练才能获得近似最优性能。为此,本文提出一种面向混合储能系统的电动汽车对抗性模仿强化学习能量管理策略,以最小化电池容量损耗成本。首先,利用动态规划在多种标准驾驶条件下生成专家知识,用于引导强化学习的探索过程,该专家知识表示为最优功率分配映射。其次,在早期模仿阶段,通过对抗网络使强化学习智能体的动作快速逼近最优功率分配映射。再次,根据对抗网络中判别器的输出设计动态模仿权重,促使智能体在在线驾驶条件下逐步过渡到自主探...

解读: 该对抗模仿强化学习策略对阳光电源混合储能系统具有重要应用价值。可应用于ST系列PCS的电池-超级电容混合储能优化,通过专家知识引导的强化学习加速训练42.6%,降低电池容量损耗成本5.1%-12.4%。技术可集成至iSolarCloud平台实现在线工况自适应功率分配,延长PowerTitan储能系统...