找到 3 条结果 · Applied Energy
基于先验知识的大规模超高清光伏板分割数据集增强框架
A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge
Ruiqing Yang · Guojin He · Ranyu Yin · Guizhou Wang 等9人 · Applied Energy · 2025年1月 · Vol.390
摘要 当前大多数提升模型精度的研究主要集中在模型本身的优化上,往往忽视了数据集质量的关键作用,尤其是在遥感大数据背景下。许多关于光伏发电(PV)的大规模提取研究通常仅关注光伏电站边界的粗略勾画,这限制了更深入的下游分析潜力。本文提出了一种针对光伏电站内部光伏板进行细粒度提取的框架,而非仅仅捕捉电站的外部轮廓。通过聚焦于单个光伏板级别的分割,该方法为下游应用(如发电量估算和空间布局优化)提供了更为精确的评估基础。该框架融合了先验知识,以应对地表覆盖、成像条件以及背景干扰所带来的挑战。一种创新的标签...
解读: 该超高分辨率光伏板分割框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过面板级精细识别,可显著提升SG系列逆拟器的MPPT优化策略精度,实现组串级故障诊断与发电量评估。数据集质量提升(78%→92%)为预测性维护算法提供可靠训练基础,结合先验知识的标注效率提升75%可加速电站数字...
中国废弃光伏分布的时空演化及能源-经济-环境-社会可持续效益综合评估
Spatiotemporal evolution of decommissioned photovoltaic distribution and integrated energy-economic-environmental-social sustainable benefit assessment in China
Jianli Zhou · Zihan Xu · Juan He · Dandan Liu 等8人 · Applied Energy · 2025年1月 · Vol.384
摘要 准确而详细地掌握中国废弃光伏(PV)系统在时间和空间上的分布特征,并结合对回收再利用这些废弃光伏组件所带来可持续性效益的全面评估,对于有效应对我国即将迎来的大规模光伏退役潮具有重要意义。目前,关于中国废弃光伏在时空分布及其回收利用方面的研究仍显不足。本研究采用随机森林与BP神经网络方法构建预测模型,刻画了2024年至2050年八种情景下废弃光伏的时空演化趋势,并从能源、经济、环境和社会四个维度对其可持续效益进行了综合评估。通过模糊层次分析法(FAHP)、基于指标间相关性的权重确定法(CRI...
解读: 该研究对阳光电源光储回收业务具有战略价值。2050年退役光伏将达670-1600GW,形成万亿级市场。阳光电源可结合iSolarCloud平台建立退役组件全生命周期追踪系统,为山东、河北等重点区域提前布局储能替代方案。ST系列储能系统可利用梯次利用组件降低成本,SG逆变器产品线需考虑模块化设计以延长...
基于物理的锂离子电池电化学模型参数辨识及其双种群优化方法
Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method
Aina Tian · Kailang Dong · Xiao-Guang Yang · Yuqin Wang 等7人 · Applied Energy · 2025年1月 · Vol.378
摘要 伪二维(P2D)模型因其基于物理原理的高精度,在电池管理系统中展现出日益广阔的应用前景。然而,由于难以准确辨识多个参数,且常出现求解不收敛的问题,限制了其实际应用效果。传统的数据驱动型P2D模型参数辨识方法虽然先进,但通常需要大量数据,且缺乏必要的物理机理洞察,容易导致过拟合。为应对上述挑战,本研究首先开展参数敏感性分析,以确定各类参数辨识的最佳条件;进而提出一种双种群多目标优化算法,高效地筛选出非劣解参数集。该算法的独特之处在于引入非收敛种群,以增强狼群种群的更新过程,从而提升参数辨识的...
解读: 该P2D模型参数辨识技术对阳光电源储能系统具有重要价值。通过双种群优化算法精确识别23个电池参数,可显著提升ST系列PCS和PowerTitan储能系统的BMS精度,动态工况下电压预测误差控制在9mV以内。该物理驱动方法可增强iSolarCloud平台的电池健康状态评估和预测性维护能力,避免纯数据驱...