找到 2 条结果 · Applied Energy

排序:
光伏发电技术 储能系统 深度学习 ★ 5.0

基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法

An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning

Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385

准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...

解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...

储能系统技术 储能系统 SiC器件 ★ 5.0

一种基于物理与数据辅助的抽水蓄能电站瞬态过程预测框架

A physics-based and data-aided transient prediction framework for sustainable operation of pumped-storage hydropower systems

Weichao Maa · Zhigao Zhao · Chengpeng Liu · Fei Chen 等8人 · Applied Energy · 2025年1月 · Vol.384

摘要 实现对抽水蓄能电站(PSHSs)瞬态过程的准确预测仍是一个关键挑战,主要由于现场参数存在不确定性,特别是泵-水轮机特性曲线(PTCCs)的不确定性,以及物理模型自身存在的局限性。为解决这一问题,本研究提出了一种以现场测量数据为核心的抽水蓄能电站瞬态预测框架,该框架融合了基于物理模型的校准与数据驱动的修正方法。本文提出了一种利用点分布模型(PDMs)重构PTCC的方法,其中PDM作为先验模型,通过在PTCC上定义多个特征点以适应可能发生的非刚性变形,并进行了创新性开发。该方法采用曲面重构算法...

解读: 该物理-数据混合瞬态预测框架对阳光电源储能系统具有重要借鉴价值。抽水蓄能电站的特性曲线重构方法可应用于ST系列PCS和PowerTitan储能系统的动态建模,通过现场实测数据校准物理模型,结合NARX神经网络修正预测误差,可显著提升储能系统在电网调频、削峰填谷等瞬态工况下的控制精度。该方法与iSol...