找到 3 条结果 · Applied Energy

排序:
储能系统技术 电池管理系统BMS ★ 5.0

基于增量容量曲线与S变换的电动汽车电池组健康状态估计

State-of-health estimation for EV battery packs via incremental capacity curves and S-transform

Siyi Tao · Jiangong Zhu · Yuan Lic · Siyang Chen 等10人 · Applied Energy · 2025年1月 · Vol.397

准确估计电动汽车(EV)中电池的健康状态(SOH)对于缓解用户的续航焦虑具有重要作用。然而,云端电池管理系统(BMS)数据质量欠佳,加之电池正极材料的多样性,为开发适用于实际EV应用的通用SOH估计方法带来了显著挑战。本研究提出了一种基于充电过程的可推广特征提取框架。该方法从增量容量(IC)曲线中提取时域特征,并利用S变换提取频域特征,同时引入了电池间不一致性指标。为评估所提取特征的鲁棒性,本文采用实验室数据进行了验证。此外,通过针对不同容量和正极材料电池的实验,分析了温度对电池容量及所提取特征...

解读: 该研究提出的电池SOH估计方法对阳光电源储能系统(PowerTitan/ST系列PCS)及充电桩产品具有重要价值。通过增量容量曲线和S变换的多域特征提取,结合GRU-LightGBM融合模型,可显著提升BMS电池健康状态评估精度(MAPE<1.99%)。该技术框架可集成至iSolarCloud平台,...

储能系统技术 储能系统 ★ 5.0

基于随机森林可解释人工智能揭示储能与可再生能源在脱碳进程中的协同作用

Understanding the synergy of energy storage and renewables in decarbonization via random forest-based explainable AI

Zili Chen · Zhaoyuan Wu · Lanyi Wei · Linyan Yang 等6人 · Applied Energy · 2025年1月 · Vol.390

摘要 可再生能源(RE)与储能系统(ESS)的协调发展对于低碳转型至关重要。除了最优规划方案外,理解规划结果背后的深层原因对于提升决策透明度与可靠性同样关键。本研究探讨了在不同脱碳阶段中可再生能源与中长期储能(MTES)之间协同关系的演变过程,提出了一种可解释的分析框架,用于归因并分析影响规划结果的关键因素。通过采用随机森林(Random Forest, RF)方法,该框架识别出在不同边界条件下(如碳排放限额、资源禀赋和经济约束)驱动可再生能源—储能协同效应的核心因素,从而深入揭示时间与空间因素...

解读: 该研究对阳光电源储能规划具有重要指导意义。研究揭示长时储能(LDES>100h)在新能源富集区域的季节性平衡价值,与PowerTitan液流储能系统的应用场景高度契合;短时储能在火电主导区域应对日内波动的需求,可通过ST系列PCS的快速响应能力实现。随机森林可解释性框架可集成至iSolarCloud...

光伏发电技术 储能系统 工商业光伏 ★ 5.0

一种集成的工业光伏面板清洁推荐系统以实现最优除尘

An integrated industrial PV panel cleaning recommendation system for optimal dust removal

Chao Zhang · Yunfeng Ma · Guolin Yang · Tao Chen · Applied Energy · 2025年1月 · Vol.377

摘要 基于前期研究,本文对光伏枢纽清洁推荐系统(PNCRS)的有效性进行了全面研究。PNCRS是一种智能清洁推荐系统,旨在针对不同环境条件下优化光伏(PV)面板的清洁调度。传统的固定时间间隔和基于性能退化的光伏面板维护策略往往难以奏效,主要原因是其无法适应不断变化的环境影响,特别是在极端天气条件下。这些传统方法虽然简单直接,却未能捕捉到环境变化与面板效率之间的复杂相互作用,导致清洁计划次优以及能量输出下降。该智能清洁推荐系统通过实时环境适应性、数据驱动的决策机制以及综合利润优化,在确定光伏面板清...

解读: 该智能清洁推荐系统对阳光电源iSolarCloud平台具有重要应用价值。系统采用的VMD-CGAN数据增强和WPETF特征优化技术,可与SG系列逆变器的MPPT优化算法协同,通过实时环境数据动态调整清洁策略,在工商业光伏场景下提升29-34%收益。其贝叶斯优化的利润曲线模型可集成至预测性运维系统,为...