找到 2 条结果 · 风电变流技术
风力发电机高级功率曲线建模:基于SGBRT与灰狼优化的多变量方法
Advanced power curve modeling for wind turbines: A multivariable approach with SGBRT and grey wolf optimization
Wenliang Yin · Mengqian Ji · Lin Liu · Ming Li 等7人 · Energy Conversion and Management · 2025年1月 · Vol.332
准确的功率曲线建模对于提升并网风力发电机(WTs)的运行效率和性能至关重要。为了提高建模质量并消除输入变量之间的相互影响,本文提出了一种新颖的多变量功率曲线预测方法,该方法融合了先进的机器学习技术——随机梯度提升回归树(SGBRT)和灰狼优化算法(GWO),并结合创新的数据预处理和特征选择方法。具体研究工作与创新点如下:1)在二维Copula空间中对原始数据进行清洗,以风轮转速作为辅助判据并采用概率描述方式,以处理数据不确定性及非线性依赖关系;2)提出一种偏互信息(PMI)方法用于数据分析,在此...
解读: 该风电功率曲线建模技术对阳光电源具有重要借鉴价值。其SGBRT+GWO优化算法可应用于iSolarCloud平台的光伏功率预测,提升ST储能系统的充放电策略优化精度。PMI特征选择方法可用于SG逆变器的MPPT算法改进,降低计算复杂度。二维Copula数据清洗技术适用于储能电站SCADA数据预处理,...
面向风力机结构载荷与功率评估的机器学习应用:工程视角
Towards machine learning applications for structural load and power assessment of wind turbine: An engineering perspective
Qiulei Wang · Junjie Hu · Shanghui Yang · Zhikun Dong 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 近几十年来,日益增长的能源需求加速了风电场的建设,对风力机性能中精确的载荷与功率评估提出了更高的要求。传统方法依赖于解析尾流模型和性能曲线,在复杂入流条件下往往难以适应,导致在预测风机载荷和功率输出时存在显著的不准确性。本研究以NREL 5MW基准风力机为案例,提出一种新颖的两阶段框架,用于应对风电场规划与开发各个阶段中的上述挑战。第一阶段是在初步设计阶段推导简化推力调制因子的推荐值,从而快速评估对风电场优化至关重要的最大推力载荷和疲劳推力载荷。第二阶段聚焦于详细设计阶段的机器学习模型的设...
解读: 该机器学习框架对阳光电源风电变流器及储能系统具有重要价值。通过LightGBM模型实现风机负载与功率的高精度预测(R²>0.98),可优化ST系列PCS的功率调度策略和PowerTitan储能系统的充放电控制。推荐推力调制因子方法可应用于iSolarCloud平台的预测性维护模块,结合GFM控制技术...