找到 2 条结果 · 风电变流技术

排序:
风电变流技术 储能系统 模型预测控制MPC 多物理场耦合 ★ 5.0

考虑尾流延迟特性的海上风电场LPV模型预测控制

LPV Model Predictive Control for Offshore Wind Farms Considering Wake Delay Characteristics

Yang Liu · Jiahao Lin · Ling-ling Huang · Cheng Hua 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

大规模海上风电场中显著的尾流效应要求充分考虑其延迟特性,而该特性在控制中常被忽视。针对尾流动态演化与风机控制模型参数变化之间的耦合问题,本文提出一种考虑尾流延迟特性的线性参数可变(LPV)模型预测控制方法。通过构建准稳态尾流模型,将尾流延迟特性融入风电场LPV模型,并结合两阶段降维策略简化计算,协同优化疲劳损伤均衡与发电量提升。16台风机的仿真结果表明,所建模型能准确描述尾流延迟的空间分布,所提控制方法在风速风向动态变化下有效捕捉机组间风速延迟与波动特性,显著提高发电量并降低疲劳应力,且相比静态...

解读: 该研究的尾流延迟LPV模型预测控制技术对阳光电源的储能和风电产品具有重要参考价值。首先,其动态建模方法可优化ST系列储能变流器的功率预测算法,提升大型储能电站的调度效率。其次,文中的疲劳损伤均衡策略可应用于PowerTitan系统的电池管理,延长储能设备寿命。此外,该控制方法在处理多设备耦合方面的创...

风电变流技术 深度学习 ★ 5.0

基于SCADA数据的周期增强型Informer模型用于短期风电功率预测

Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data

Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月

针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...

解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...