找到 2 条结果 · 风电变流技术
基于风险场景感知的日前风电出力预测框架
A Framework of Day-Ahead Wind Supply Power Forecasting by Risk Scenario Perception
Mao Yang · Yutong Huang · Zhao Wang · Bo Wang 等5人 · IEEE Transactions on Sustainable Energy · 2025年1月
大规模风电并网背景下,风电功率预测对电力系统安全稳定运行至关重要。现有预测方法重统计精度而轻应用风险,导致预测值与实际调度需求脱节。为此,本文提出一种考虑风险场景感知的风电出力预测(WSPF)框架。首先结合数值天气预报风速波动信息,利用TimesNet识别预测中的风险场景;其次构建有效消纳区与供电风险区评价指标,并据此优化预测曲线修正方案;最后融合多种预测模型进行验证。在中国内蒙古某风电集群的应用结果表明,该方法使WSPF平均精度提升37%,验证了其有效性与普适性。
解读: 该风电预测框架对阳光电源的储能和风电变流产品具有重要应用价值。首先,TimesNet风险场景识别技术可集成至ST系列储能变流器的调度控制系统,优化储能容量配置和充放电策略。其次,风险区评价方法可应用于PowerTitan大型储能系统的调峰调频功能设计,提升系统对风电波动的响应能力。此外,该预测框架也...
基于趋势分类与空间信息集成模型的日前风电场群功率预测
Day-ahead wind farm cluster power prediction based on trend categorization and spatial information integration model
Mao Yang · Yuxi Jiang · Chuanyu Xu · Bo Wang 等6人 · Applied Energy · 2025年1月 · Vol.388
摘要 随着风电产业的快速发展和风电装机容量的不断增加,影响发电量的因素在时间和空间上呈现出高度耦合的关系,这给风电场群功率预测(WFCPP)带来了极大的挑战。为解决这一问题,本文提出了一种考虑风电集群趋势聚合特性与空间信息集成(SII)的区域风电功率预测(WPP)精度提升方法。首先,引入一种考虑空间特征的趋势聚类方法以实现集群划分。该方法采用静态分区策略应对持续随机变化的动态环境,削弱了风速空间离散性对集群划分的影响。其次,深入挖掘多个风电场群(WFC)之间的多维时空耦合特性,并构建了融合时空信...
解读: 该风电集群功率预测技术对阳光电源储能系统具有重要应用价值。通过趋势聚类和空间信息融合,可显著提升区域风电预测精度(RMSE降低2.07%),为ST系列PCS和PowerTitan储能系统提供更精准的充放电调度依据。其时空耦合特征挖掘方法可集成至iSolarCloud平台,优化风储协同控制策略,配合G...