← 返回
风电变流技术
★ 5.0
基于趋势分类与空间信息集成模型的日前风电场群功率预测
Day-ahead wind farm cluster power prediction based on trend categorization and spatial information integration model
| 作者 | Mao Yang · Yuxi Jiang · Chuanyu Xu · Bo Wang · Zhao Wang · Xin Su |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Study improves regional wind power prediction by addressing irrational clustering. |
语言:
中文摘要
摘要 随着风电产业的快速发展和风电装机容量的不断增加,影响发电量的因素在时间和空间上呈现出高度耦合的关系,这给风电场群功率预测(WFCPP)带来了极大的挑战。为解决这一问题,本文提出了一种考虑风电集群趋势聚合特性与空间信息集成(SII)的区域风电功率预测(WPP)精度提升方法。首先,引入一种考虑空间特征的趋势聚类方法以实现集群划分。该方法采用静态分区策略应对持续随机变化的动态环境,削弱了风速空间离散性对集群划分的影响。其次,深入挖掘多个风电场群(WFC)之间的多维时空耦合特性,并构建了融合时空信息的输入模式。最后,将所提方法应用于中国吉林某风电场群。结果表明,与其他WFCPP方法相比,所提方法的RMSE、MAE和SMAPE平均分别降低了2.07%、2.53%和8.34%,R²和R则平均提高了17.91%和24.2%。该方法将进一步促进风电(WP)的大规模消纳,同时降低大规模风电并网对电力系统安全稳定运行带来的不利影响。
English Abstract
Abstract With the rapid development of the wind power industry and the increase of installed wind power capacity, the factors affecting the power generation show a highly coupled relationship in time and space, which brings extremely challenges to wind farm cluster power prediction (WFCPP). To solve this problem, this study proposes a method to improve the accuracy of regional wind power prediction (WPP) method which takes into account the trend aggregation of wind power clusters and spatial information integration (SII). Firstly, A trend clustering method considering spatial characteristics is introduced to realize cluster division. This method uses static partition method to deal with the dynamic environment of continuous random changes, and weakens the influence of wind speed spatial dispersion on cluster division. Then, the multidimensional spatiotemporal coupling characteristics between multiple wind farm clusters (WFC) are deeply explored, and the input mode of incorporating spatiotemporal information is constructed. Finally, the proposed method is applied to a wind farm cluster in Jilin, China. The results show that the RMSE , MAE , and SMAPE of the proposed method are on average 2.07 %, 2.53 %, and 8.34 lower, and the R 2 and R are on average 17.91 % and 24.2 % higher, compared to other WFCPP methods. This will further boost the uptake of wind power (WP), while reducing the impact of large-scale wind power grid connection on the safe and stable operation of the power system .
S
SunView 深度解读
该风电集群功率预测技术对阳光电源储能系统具有重要应用价值。通过趋势聚类和空间信息融合,可显著提升区域风电预测精度(RMSE降低2.07%),为ST系列PCS和PowerTitan储能系统提供更精准的充放电调度依据。其时空耦合特征挖掘方法可集成至iSolarCloud平台,优化风储协同控制策略,配合GFM控制技术增强电网稳定性。该方法的多维度预测模型可启发阳光电源开发智能预测性维护功能,提升大规模新能源并网场景下的系统调度能力和经济效益。