找到 2 条结果 · 风电变流技术
将季内振荡与数值天气预报结合用于15天风电功率预测
Integrating Intra-Seasonal Oscillations With Numerical Weather Prediction for 15-Day Wind Power Forecasting
Shuang Han · Weiye Song · Jie Yan · Ning Zhang 等6人 · IEEE Transactions on Power Systems · 2025年2月
延长风电功率预测(WPF)的时间尺度对于以可再生能源为主的电力系统的电网管理和市场运营至关重要。然而,风电功率预测对数值天气预报(NWP)的高度依赖带来了巨大挑战。基于短期数据的数值天气预报迭代运算会放大其固有的不确定性,导致其超过10天的预报精度降低。为解决这一问题,引入季节内振荡(ISO)来捕捉更长期、更大尺度的气象模式,进而提出了用于15天风电功率预测的ISO - NWP集成框架。首先,开发了一个遥相关(TC)的历史时空定位模型,该模型在季节内振荡的影响下关联远距离的天气变化和风电功率波动...
解读: 该研究对阳光电源的风电变流器和储能系统具有重要应用价值。通过融合季内振荡预测与数值天气预报的混合建模方法,可显著提升风电功率预测精度,这对我司ST系列储能变流器的调度策略优化和PowerTitan储能系统的容量配置具有直接指导意义。具体而言,可将该预测算法集成到iSolarCloud平台,优化储能调...
风电场在中长期滚动交易中的策略性投标:一种双层多智能体深度强化学习方法
Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach
Yi Zheng · Jian Wang · Chengmin Wang · Chunyi Huang 等6人 · Applied Energy · 2025年1月 · Vol.383
摘要 随着可再生能源在电力市场中渗透率的不断提高,边际电价受到抑制,给风电生产商的盈利能力带来了挑战。为此,有效的中长期(MLT)滚动交易能够对冲现货市场价格风险,提升盈利水平。然而,传统的投标方法往往难以捕捉风电出力及交易动态在较长时间跨度内的复杂不确定性。本文提出了一种专为优化风电中长期滚动交易而设计的双层多智能体深度强化学习(DRL)方法。该方法创新性地将Black–Scholes模型与Hamiltonian函数相结合,构建了一个最优决策框架,能够在短期投标效率与长期战略定位之间实现平衡。...
解读: 该深度强化学习竞价策略对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过双层多智能体优化框架,可提升风储联合系统在中长期电力市场的收益能力,有效对冲现货价格风险。其时空建模技术可集成至iSolarCloud平台,实现储能参与市场交易的智能决策,优化充放电策略。结合阳光电...