找到 2 条结果 · 风电变流技术

排序:
风电变流技术 深度学习 ★ 5.0

基于SCADA数据的周期增强型Informer模型用于短期风电功率预测

Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data

Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月

针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...

解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...

风电变流技术 深度学习 ★ 5.0

基于层次图神经网络与极值理论的短期区域风电功率预测方法

Short-term regional wind power forecast method based on hierarchical graph neural network and extreme value theory

Menglin Liab · Ming Yang · Yixiao Yuab · Energy Conversion and Management · 2025年1月 · Vol.341

摘要 从电力系统运行者的角度来看,管辖区域内风电总出力潜力相比单个风电场更受关注。挖掘目标区域内多个风电场站点之间的时空依赖关系可显著提升预测性能。然而,大量风电场由于不同空间尺度天气系统的连续性所引发的复杂相关性,给建模带来了不可忽视的挑战;此外,基于均方误差的传统损失函数在应对极端事件时表现出固有的局限性。为解决上述问题并进一步提高预测精度,本文构建了一种结合修正模块和基于极值理论改进损失函数的层次化时空图神经网络模型。首先,综合考虑地理距离信息和长期气候特征,采用凝聚式层次聚类方法将区域划...

解读: 该分层图神经网络区域风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。精准的区域风电预测可优化储能系统充放电策略,提升风储协同效率。其极值理论改进损失函数可增强极端工况预测能力,为iSolarCloud平台的预测性维护提供算法支撑。时空依赖建模方法可应用于多站点...