找到 2 条结果 · 风电变流技术
基于SCADA数据的周期增强型Informer模型用于短期风电功率预测
Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data
Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月
针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...
解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...
风力发电机高级功率曲线建模:基于SGBRT与灰狼优化的多变量方法
Advanced power curve modeling for wind turbines: A multivariable approach with SGBRT and grey wolf optimization
Wenliang Yin · Mengqian Ji · Lin Liu · Ming Li 等7人 · Energy Conversion and Management · 2025年1月 · Vol.332
准确的功率曲线建模对于提升并网风力发电机(WTs)的运行效率和性能至关重要。为了提高建模质量并消除输入变量之间的相互影响,本文提出了一种新颖的多变量功率曲线预测方法,该方法融合了先进的机器学习技术——随机梯度提升回归树(SGBRT)和灰狼优化算法(GWO),并结合创新的数据预处理和特征选择方法。具体研究工作与创新点如下:1)在二维Copula空间中对原始数据进行清洗,以风轮转速作为辅助判据并采用概率描述方式,以处理数据不确定性及非线性依赖关系;2)提出一种偏互信息(PMI)方法用于数据分析,在此...
解读: 该风电功率曲线建模技术对阳光电源具有重要借鉴价值。其SGBRT+GWO优化算法可应用于iSolarCloud平台的光伏功率预测,提升ST储能系统的充放电策略优化精度。PMI特征选择方法可用于SG逆变器的MPPT算法改进,降低计算复杂度。二维Copula数据清洗技术适用于储能电站SCADA数据预处理,...