找到 2 条结果 · 风电变流技术

排序:
风电变流技术 ★ 5.0

基于趋势分类与空间信息集成模型的日前风电场群功率预测

Day-ahead wind farm cluster power prediction based on trend categorization and spatial information integration model

Mao Yang · Yuxi Jiang · Chuanyu Xu · Bo Wang 等6人 · Applied Energy · 2025年1月 · Vol.388

摘要 随着风电产业的快速发展和风电装机容量的不断增加,影响发电量的因素在时间和空间上呈现出高度耦合的关系,这给风电场群功率预测(WFCPP)带来了极大的挑战。为解决这一问题,本文提出了一种考虑风电集群趋势聚合特性与空间信息集成(SII)的区域风电功率预测(WPP)精度提升方法。首先,引入一种考虑空间特征的趋势聚类方法以实现集群划分。该方法采用静态分区策略应对持续随机变化的动态环境,削弱了风速空间离散性对集群划分的影响。其次,深入挖掘多个风电场群(WFC)之间的多维时空耦合特性,并构建了融合时空信...

解读: 该风电集群功率预测技术对阳光电源储能系统具有重要应用价值。通过趋势聚类和空间信息融合,可显著提升区域风电预测精度(RMSE降低2.07%),为ST系列PCS和PowerTitan储能系统提供更精准的充放电调度依据。其时空耦合特征挖掘方法可集成至iSolarCloud平台,优化风储协同控制策略,配合G...

风电变流技术 储能系统 ★ 5.0

基于风速-功率相关趋势清洗方法保留稀疏密度下的正常功率曲线数据

Preserving Normal Power Curve Data With Sparse Density via Wind Speed-Power Correlation Trend Cleaning Method

Hongrui Li · Shuangxin Wang · Jiading Jiang · Jun Liu 等6人 · IEEE Transactions on Sustainable Energy · 2024年9月

风况的随机性与发电受限导致风电功率曲线上正常数据分布稀疏,易在数据清洗中被误删,影响短期风电预测。为此,本文提出一种基于风速-功率相关趋势构建决策边界的方法以保留正常数据。首先利用风速与功率的正相关性,采用增量趋势搜索策略提取趋势曲线;进而引入散点运动趋势算法消除密集的受限功率数据;最后基于核函数构建3-sigma边界,抑制残余聚类异常值对边界的影响。在三个风电场共17台风机上的实验表明,该方法优于八种先进算法,尤其适用于正常数据稀疏场景。

解读: 该风速-功率相关趋势清洗方法对阳光电源的风电储能混合系统具有重要应用价值。可直接应用于PowerTitan大型储能系统的风储联合调度优化,提升ST系列储能变流器在风电场景下的功率预测精度。该方法通过保留稀疏正常数据,有助于iSolarCloud平台实现更准确的风电功率预测和储能调度决策,对提升风储混...