找到 2 条结果 · 风电变流技术

排序:
风电变流技术 GaN器件 深度学习 ★ 5.0

可解释性增强模糊集用于配电鲁棒最优调度中区域风电不确定性量化

Interpretable Augmented Ambiguity Set for Quantifying Regional Wind Power Uncertainty in Distributionally Robust Optimal Dispatch

Zhuo Li · Lin Ye · Ming Pei · Xuri Song 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

大规模风电并网给电力系统运行带来严峻的不确定性挑战。本文提出一种基于深度学习的可解释增强模糊集,用于分布鲁棒优化框架下的两阶段经济调度,以精确刻画区域风电不确定性。该模糊集融合各风电场细粒度误差模型及站点间交互依赖关系。首次提出多教师知识蒸馏-时间生成对抗网络(MKD-time GAN),通过级联学习机制构建单风电场预测误差的球形模糊集;进一步结合Nataf变换将多个模糊集映射为表征区域联合误差分布的增强模糊集,并推导出可 tractable 的两阶段调度求解算法。IEEE 118节点系统验证了...

解读: 该研究提出的深度学习增强模糊集方法对阳光电源的储能和风电产品线具有重要应用价值。具体而言:1) 可应用于ST系列储能变流器的调度优化,提升大规模风储联合系统的经济性和可靠性;2) 其多教师知识蒸馏框架可优化PowerTitan储能系统的功率预测算法,提高调度精度;3) 研究的区域联合误差建模方法可用...

风电变流技术 储能系统 ★ 5.0

基于知识与数据驱动融合Koopman方法的双馈感应发电机风电场频率支撑能力在线评估

Online assessment of frequency support capability of the DFIG-based wind farm using a knowledge and data-driven fusion Koopman method

Yimin Ruan · Wei Yao · Qihang Zong · Hongyu Zhou 等8人 · Applied Energy · 2025年1月 · Vol.377

摘要 随着可再生能源在电力系统中渗透率的不断提高,系统的频率稳定性有所下降。因此,风电场(WFs)等可再生能源电站必须具备足够的频率支撑能力。为了最大化风电场的频率支撑能力,准确确定其频率支撑能力边界(FSCB)至关重要。由于风资源分布不均以及风电机组运行状态复杂,精确评估风电场FSCB具有挑战性。针对这一问题,本文提出一种基于知识与数据驱动融合的Koopman方法,用于评估基于双馈感应发电机(DFIG)的风电场的FSCB。本文分析了FSCB的特性,并构建了一个多维指标体系,从理论和实际两个层面...

解读: 该Koopman融合方法对阳光电源风储协同系统具有重要价值。可应用于ST系列储能变流器与风电场的协调调频控制,通过在线评估风电场频率支撑能力边界,动态优化PowerTitan储能系统的调频响应策略。该方法评估误差小于2%且速度提升10倍,可集成至iSolarCloud平台实现预测性调频资源管理。结合...