找到 2 条结果 · 光伏发电技术
基于I-V曲线成像与双流深度神经网络的光伏系统遮挡类型及严重程度诊断
Shading type and severity diagnosis in photovoltaic systems via I-V curve imaging and two-stream deep neural network
Zengxiang Hea · Hong Cai Chen · Shuo Shan · Yihua Hu 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 遮挡是光伏(PV)系统中最常见的异常现象之一,会导致功率损失和热点效应。目前大多数研究仅能实现遮挡检测,而无法进一步诊断遮挡的类型和严重程度。本文提出了一种结合I-V曲线成像与双流深度神经网络(DNN)的有效方法,用于诊断遮挡类型,并估计实际运行光伏系统中五种常见遮挡类型的严重程度。该方法首先对光伏组串的I-V曲线进行重采样,并转换至标准测试条件(STC),以消除数据尺度和环境因素对遮挡诊断结果的影响。随后,采用一种称为格拉米安角和场(Gramian angular summation f...
解读: 该阴影诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过I-V曲线成像与双流深度神经网络,可实现阴影类型识别与严重程度量化评估,弥补现有MPPT优化技术仅能检测异常但无法精准诊断的不足。建议将GASF时序成像与LSTM-CNN融合算法集成至智能运维平台,结合组串级...
一种基于卫星图像与时间序列多模态学习的鲁棒光伏功率预测方法
A Robust Photovoltaic Power Forecasting Method Based on Multimodal Learning Using Satellite Images and Time Series
Kai Wang · Shuo Shan · Weijing Dou · Haikun Wei 等5人 · IEEE Transactions on Sustainable Energy · 2024年11月
超短期光伏功率预测对提升电网稳定性具有重要意义。现有基于卫星图像的方法多依赖像素级预测,效率低且冗余,而深度学习模型难以建立大尺度云特征与光伏发电之间的关联。本文提出一种端到端的多模态学习模型,直接融合卫星图像与时间序列实现多步光伏功率预测。采用ConvLSTM-RICNN编码感兴趣区域内的云层动态特征,并提出DCCA-LF融合策略,将深度典型相关分析引入晚期融合以增强跨模态特征对齐,有效抑制噪声与缺失数据影响。基于澳大利亚Alice Springs地区BP Solar与Himawari-8卫星...
解读: 该多模态光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。其超短期预测能力可直接集成至SG系列光伏逆变器的智能诊断系统,通过卫星云图与历史数据融合实现15分钟至4小时功率预测,为MPPT算法提供前瞻性优化依据。对于PowerTitan储能系统,该技术可优化充放电策略制定,...