← 返回
光伏发电技术
★ 5.0
一种基于卫星图像与时间序列多模态学习的鲁棒光伏功率预测方法
A Robust Photovoltaic Power Forecasting Method Based on Multimodal Learning Using Satellite Images and Time Series
| 作者 | Kai Wang · Shuo Shan · Weijing Dou · Haikun Wei · Kanjian Zhang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年11月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 超短期光伏功率预测 多模态学习模型 卫星图像 ConvLSTM - RICNN DCCA - LF |
语言:
中文摘要
超短期光伏功率预测对提升电网稳定性具有重要意义。现有基于卫星图像的方法多依赖像素级预测,效率低且冗余,而深度学习模型难以建立大尺度云特征与光伏发电之间的关联。本文提出一种端到端的多模态学习模型,直接融合卫星图像与时间序列实现多步光伏功率预测。采用ConvLSTM-RICNN编码感兴趣区域内的云层动态特征,并提出DCCA-LF融合策略,将深度典型相关分析引入晚期融合以增强跨模态特征对齐,有效抑制噪声与缺失数据影响。基于澳大利亚Alice Springs地区BP Solar与Himawari-8卫星2020年1月1日至2022年10月8日的公开数据验证表明,该模型在各类云况下均取得最低RMSE与MAE,且复杂度最小,具备良好的鲁棒性。
English Abstract
Ultra-short-term photovoltaic (PV) power forecasting holds significant importance in enhancing grid stability. Most PV power forecasting methods based on satellite images rely on pixel-level predictions, which are inefficient and redundant. Meanwhile, current deep-learning approaches struggle to establish correlations between large-scale cloud features and PV generation patterns. In this paper, an end-to-end model based on multimodal learning is proposed for directly obtaining multi-step PV power forecasts from satellite images and time series. To capture cloud dynamics and features within the region of interest (RoI), ConvLSTM-RICNN is utilized to encode satellite images. To mitigate the impact of noise and missing data in PV power, a robust fusion approach named DCCA-LF is introduced. This approach integrates deep canonical correlation analysis (DCCA) into late fusion (LF) to strengthen cross-modal feature alignment. The proposed model is verified using publicly available data from BP Solar in Alice Springs and Himawari-8, from January 1, 2020, to October 8, 2022. Comparison with current state-of-the-art research shows that the suggested model achieves the best RMSE and MAE with minimal complexity across all cloud conditions. Moreover, the proposed approach is robust to noise and missing data.
S
SunView 深度解读
该多模态光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。其超短期预测能力可直接集成至SG系列光伏逆变器的智能诊断系统,通过卫星云图与历史数据融合实现15分钟至4小时功率预测,为MPPT算法提供前瞻性优化依据。对于PowerTitan储能系统,该技术可优化充放电策略制定,提升光储协同效率。DCCA-LF融合策略对缺失数据的鲁棒性,特别适合分布式光伏电站的复杂运行环境。建议将ConvLSTM云层动态识别算法引入构网型GFM控制器,增强电网扰动预判能力,提升系统稳定性裕度。