找到 3 条结果 · 光伏发电技术
基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制
Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning
Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng 等5人 · Applied Energy · 2025年1月 · Vol.379
摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器...
解读: 该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有M...
DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络
DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting
Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378
准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...
解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...
基于可重构有机光伏器件的视觉突触
Visual synapse based on reconfigurable organic photovoltaic cell
Xiangrong Pu1Fan Shu2Qifan Wang1Gang Liu2Zhang Zhang1 · 半导体学报 · 2025年1月 · Vol.46
受大脑分层协同处理视觉信息的启发,本文利用PM6:Y6体系优异的光响应特性,构建了一种垂直结构的光可调有机忆阻器,系统研究了其阻变特性、光电探测能力及光突触行为模拟。该器件实现了稳定的渐进式电阻调控,成功模拟了电压控制的长时程增强/抑制(LTP/LTD)及多种光电协同调节的突触可塑性,并仿真实现了人类视觉神经系统的图像感知与识别功能。以非易失性Au/PM6:Y6/ITO忆阻器作为人工突触与神经元模型,构建了分层协同处理的SLP-CNN级联神经网络,利用其线性可调光电导特性实现网络权重更新,图像识...
解读: 该有机光伏忆阻器技术为阳光电源智能运维系统提供创新思路。其光电协同突触可塑性机制可应用于iSolarCloud平台的边缘智能诊断:利用光伏组件自身光响应特性实现分布式故障识别,无需额外传感器。分层协同SLP-CNN架构可优化ST储能系统的BMS电池状态预测,通过模拟神经突触的渐进式权重调节实现自适应...