← 返回
光伏发电技术 储能系统 ★ 5.0

基于创新风-光-生物质多联产系统生产绿色氨和电力的可行性研究

Feasibility study of green ammonia and electricity production via an innovative wind-solar-biomass polygeneration system

作者 Mohammad Hasan Khoshgoftar Manesh · Soheil Davadgaran · Seyed Alireza Mousavi Rabeti · Ana M. Blanco Marigort
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 384 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel solar-biomass-wind driven polygeneration system is presented.
语言:

中文摘要

摘要 由于化石燃料的使用导致全球温室气体增加以及不可再生资源面临枯竭的风险,这些因素推动了可再生能源多联产系统的扩展。本研究聚焦于整合太阳能、生物质能和风能,以实现电力、工艺蒸汽和氨的同步生产。所提出系统的总体运行方式为:采用合成气-太阳能混合锅炉产生低压和中压两个等级的蒸汽。中压蒸汽与空气及城市固体废物一同作为气化工艺单元的进料。气化单元产生的合成气用于供给锅炉燃料和氨合成单元原料。在进行氨合成之前,必须对原料合成气进行净化处理。为此,采用了水煤气变换和CO2捕集单元进行净化。随后,净化后的合成气与氮气在氨合成反应器中作用转化为氨。该单元所需的氮气通过低温空气分离装置制取,其用电由风力发电机提供。所生产的部分氨被用作下游发电单元的燃料。基于氨-氢混合燃料的开式布雷顿循环利用上述氨流。该单元所需的氢气由风力驱动的质子交换膜(PEM)电解槽供应。最后,采用超临界二氧化碳循环和有机朗肯循环回收布雷顿循环排出的余热。此外,地热能还被用于预热进入透平的有机工质,以提高发电功率。本文进行了能量、㶲、㶲经济性和㶲环境性(4E)分析,并结合敏感性分析和基于蜻蜓算法的多目标优化。系统的整体能源效率、㶲效率、总成本率和环境影响率分别为31.33%、38.53%、1.56美元/秒和14.77毫Pt/秒。三目标优化使能源效率提高了1.72%,同时将总成本率降低了15.86%。在最优运行条件下,系统日产氨275.44吨,产汽3.17千克/秒,发电功率达18.51兆瓦。计算得到的投资回收期为3.29年,但在实际应用场景中可能更长,因此结果应谨慎解读。

English Abstract

Abstract The increase in greenhouse gases in the world due to the use of fossil fuels and the risk of losing non-renewable resources are important factors in the expansion of renewable polygeneration systems . The current research focuses on integrating solar-biomass-wind renewable energies to produce power, process steam, and ammonia simultaneously. The general operation of the proposed system is that a syngas-solar hybrid boiler is used to produce steam at two low-pressure and medium-pressure levels. Medium-pressure steam has been used as the feed of gasification process unit along with air and municipal solid waste . The syngas produced from the gasification unit is used to supply boiler fuel and ammonia unit feed. Before the ammonia synthesis process, it is necessary to purify the feed syngas. In this regard, water gas shifting and CO 2 capture units have been used for purification. Next, the purified syngas with nitrogen in the presence of ammonia synthesis reactors are converted to ammonia. The nitrogen feed needed by the unit is created through a cryogenic air separation unit that supplies its electricity from wind turbines . A part of the ammonia produced has been used to fuel the downstream power generation unit. The Brayton open cycle based on ammonia-hydrogen hybrid fuel uses the described ammonia stream. The hydrogen required by this unit is supplied from the wind PEM electrolyzer . Finally, supercritical carbon dioxide cycles and organic Rankine cycle have been used to recover heat output from the Brayton cycle . Geothermal energy has also been used to preheat the organic fluid entering the turbine to increase power. Energy, exergy, exergeoeconomic, and exergoenvironmental (4E) analyses, along with sensitivity analysis and multi-objective optimization using the dragonfly algorithm, were performed. The overall energy efficiency, exergy efficiency , total cost rate, and environmental impact rate were 31.33 %, 38.53 %, 1.56 $/s, and 14.77 mPts/s, respectively. Three-objective optimization improved energy efficiency by 1.72 % and reduced the total cost rate by 15.86 %. In optimal operation, the system produces 275.44 tons/day of ammonia, 3.17 kg/s of steam, and 18.51 MW of power. The payback period was calculated to be 3.29 years, but in real-world scenarios, it may be longer, so the result should be interpreted cautiously.
S

SunView 深度解读

该风光生物质多能互补制氨系统对阳光电源具有重要启示。系统集成风电PEM电解制氢、光伏-生物质混合发电及储能技术,与我司ST系列储能变流器、SG光伏逆变器形成技术协同。特别是氨氢混合燃料发电与储能耦合方案,可为PowerTitan储能系统提供长时储能路径创新。系统38.53%的火用效率及3.29年投资回收期验证了多能互补经济性,为iSolarCloud平台拓展氢氨能源管理模块提供数据支撑,助力构建新型电力系统解决方案。