← 返回
基于增强特征提取与新型损失函数的TimesNet光伏功率多步短期预测方法
Multi-step short-term forecasting of photovoltaic power utilizing TimesNet with enhanced feature extraction and a novel loss function
| 作者 | Sheng Yu · Bin He · Lei Fang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Using the TimesNet for 2D modeling enhances the expressiveness of features. |
语言:
中文摘要
摘要 天气条件的不稳定性常导致光伏发电呈现出随机性和波动性,使得准确可靠的光伏发电功率预测对于综合能源系统的稳定调度至关重要。由于难以捕捉相邻离散时间点之间的时序依赖关系,多步预测仍面临挑战,这主要归因于一维建模方法在时间序列特征表达能力上的局限性。为此,本文提出一种专门针对光伏发电功率多步短期预测的方法论框架。该框架基于TimesNet架构,通过将气象特征在二维空间建模以增强特征表达能力。此外,引入了一种新的特征提取模块,用于替代原始TimesNet中的Inception模块,缓解了标准卷积中存在的特征冗余和卷积核共享问题,旨在提升TimesNet对关键信息的识别能力。考虑到数据集中不可避免地存在异常值,以及传统损失函数对异常值敏感或难以拟合非线性关系的缺陷,本文提出一种新型损失函数以克服这些局限性。为验证所提方法的性能,其在三个数据集上进行了四个预测时域(提前1小时、3小时、6小时和12小时)的测试。相较于原始TimesNet,在12小时预测中平均RMSE和MAPE分别降低了3.21%和9.36%;相较于LightTS、Informer和DLinear,在12小时预测中平均MAE分别降低了16.45%、24.62%和11.41%。所提出的损失函数亦优于传统的损失函数(MAE、MSE、Huber、Log-Cosh),其最优指标率达到平均77%。结果表明,本文所提出的模型与损失函数在多步光伏发电功率预测中具有优异的预测精度,可有效指导可再生能源的稳定并网。
English Abstract
Abstract The instability of weather conditions often causes photovoltaic power generation to exhibit randomness and volatility, making accurate and reliable photovoltaic power forecasting crucial for the stable scheduling of integrated energy systems . Multi-step forecasting remains a challenge due to the difficulty in capturing temporal dependencies among neighboring discrete time points, which is attributable to the limited expressiveness of time-series features using one-dimensional modeling methods. Hence, this paper proposes a methodological framework tailored for multi-step short-term forecasting of photovoltaic power generation . The framework is based on the TimesNet architecture, which models meteorological features in two dimensions to enhance feature expressiveness. Additionally, a new feature extraction module is introduced to replace the Inception module in the original TimesNet, mitigating issues of feature redundancy and convolution kernel sharing associated with standard convolution. This enhancement aims to improve TimesNet's ability to recognize critical information. Considering the inevitable presence of outliers in datasets and the drawbacks of traditional loss functions, which are sensitive to outliers or struggle to fit nonlinear relationships, this paper proposes a novel loss function to overcome these limitations. To validate the performance of the proposed method, it was tested on three datasets across four prediction horizons (1 h, 3 h, 6 h, and 12 h ahead). Compared to the original TimesNet, it reduces the average RMSE and MAPE by 3.21 % and 9.36 % for the 12-h prediction. Compared to LightTS, Informer, and DLinear, it reduces the average MAE by 16.45 %, 24.62 %, and 11.41 % for the 12-h prediction, respectively. The proposed loss function also outperforms traditional loss functions (MAE, MSE , Huber, Log-Cosh) with an optimal metrics rate averaging 77 %. These results demonstrate that the proposed model and loss function achieve excellent accuracy in multi-step photovoltaic power forecasting, guiding the stable integration of renewable energy into the grid.
S
SunView 深度解读
该多步光伏功率预测技术对阳光电源iSolarCloud智慧运维平台及储能系统调度具有重要价值。TimesNet二维时序建模可增强SG系列逆变器功率预测精度,改进的损失函数能提升异常工况识别能力。12小时预测RMSE降低3.21%可优化ST系列PCS的充放电策略制定,减少PowerTitan储能系统的调度偏差。该方法可集成至GFM/GFL控制算法,提升虚拟同步发电机VSG在高比例新能源并网场景下的稳定性,为光储一体化系统提供更可靠的预测性维护支撑。