← 返回
用于燃料生产的太阳能热化学反应器中氧泵辅助的先进热管理
Advanced thermal management for oxygen pump assisted solar thermochemical reactor for fuel production
| 作者 | Runsen Wang · Yuzhu Chen · Meng Lin |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | An active cooling method was proposed for stable oxygen pump operation. |
语言:
中文摘要
摘要 高性能的热化学循环在燃料生产过程中需要一个高能耗的还原步骤,这是由于其对高温和低氧分压的严格条件所致。集成的高温电化学氧泵(EOP)能够实现有效的原位除氧,以较低的能量消耗灵活调节氧环境。然而,由极端高的还原温度(通常超过1500 °C)引起的热失效问题对氧泵的稳定性构成了挑战。本研究提出了一种通过主动冷却氧泵以防止过热的热管理策略,用于实现氧泵的集成。采用数值模拟与实验方法相结合的方式评估了反应器的性能。在有无主动冷却条件下,分别评估了氧化铈(ceria)的热化学性能和EOP的电化学性能。结果表明,氧化铈的高度(H_ceria)是影响反应器性能的关键因素,其影响程度超过了间隙距离(D_gap)、温差(T_dif)或冷却流体质量流量(M_c)。将H_ceria从3 mm增加到7 mm,在20 s时电流密度从149.4 A·m⁻²提高至356.5 A·m⁻²,并在3000 s时将δ值从0.0357降低至0.0292。然而,由于H_ceria增加导致的质量负载增加,总的产氧量上升,从而实现了更优的反应器性能。增大D_gap可减小EOP内部的温度梯度,进而增强其热机械稳定性。在1373 K下烧结的自主研制氧泵表现出有效的除氧速率,在162.1 A·m⁻²、0.3 V和1373 K条件下稳定运行。然而,在1673 K下烧结的氧泵性能显著下降,导致氧气泵送能力不足。在所提出的CA方案中,当T_dif为900 K时实现了最优的反应器性能,该条件平衡了EOP在适宜操作温度范围内的除氧能力与热化学反应器的整体性能。本研究为电化学氧泵与热化学反应器在实际应用中的集成提供了全面的设计指导和运行策略。
English Abstract
Abstract High-performance thermochemical cycles for fuel production require an energy-intensive reduction step due to the stringent conditions of high temperature and low oxygen partial pressure . An integrated high-temperature electrochemical oxygen pump (EOP) can enable effective in-situ oxygen removal, offering flexibility in tuning the oxygen environment with low energy consumption. However, thermal failure induced by extreme high reduction temperature, typically > 1500 °C, poses a challenge to the stability of the oxygen pump. This study proposes a thermal management strategy for oxygen pump integration by actively cooling the pump to prevent overheating. The performance of the reactor was evaluated using both numerical simulation and experimental methods. The thermochemical performance of ceria and the electrochemical performance of the EOP were assessed with and without active cooling. Results indicated that the ceria height ( H ceria ) was the key factor influencing reactor performance, more so than the gap distance ( D gap ), temperature difference ( T dif ), or mass flow rate of the cooling fluid ( M c ). Increasing the H ceria from 3 mm to 7 mm improved the current density from 149.4 A·m -2 to 356.5 A·m -2 at 20 s and reduced the δ from 0.0357 to 0.0292 at 3000 s. Howevever, due to increased mass loading at increased H ceria , the overall oxygen producted increased resulting a in better reactor performance. Increasing the D gap reduced the temperature gradient within the EOP, and hence enhancing the thermomechanical stability. An in-house oxygen pump sintered at 1373 K demonstrated an effective oxygen removal rate, operating at 162.1 A·m -2 with 0.3 V and 1373 K. However, the oxygen pump sintered at 1673 K showed a significant decrease in performance, resulting in inadequate oxygen pumping. Optimal reactor performance was achieved in the proposed CA scheme with a T dif at 900 K, balancing the EOP oxygen removal capability in favorable operating temperature range and thermochemical reactor performance. This study provides comprehensive design guidelines and operational strategies for the integration of electrochemical oxygen pump with thermochemical reactors for practical applications.
S
SunView 深度解读
该太阳能热化学制氢技术对阳光电源储能系统具有重要启示。研究中的热管理策略与主动冷却方案可应用于PowerTitan储能系统的热控优化,特别是电化学氧泵的温度梯度控制思路可借鉴至ST系列PCS的功率器件散热设计。文中提出的多参数协同优化方法(材料高度、间隙距离、温差控制)对储能系统电芯热管理和BMS策略优化具有参考价值。该技术路线可与光伏制氢场景结合,为iSolarCloud平台拓展氢能管理模块提供技术支撑,推动光储氢一体化解决方案发展。