← 返回
光伏发电技术 储能系统 ★ 5.0

一种针对异质城乡区域的全面逐栋建筑屋顶光伏系统检测方法:以法国领土为例

A comprehensive building-wise rooftop photovoltaic system detection in heterogeneous urban and rural areas: application to French territories

作者 Martin Thebault1 · Boris Nerot1 · Benjamin Govehovit · Christophe Menezo
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 388 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Building-by-building approach to detect rooftop PV systems from aerial images.
语言:

中文摘要

摘要 随着屋顶光伏(RPV)系统的快速扩张,准确识别这些装置的位置对于城市规划、电网管理以及社会经济分析变得至关重要。然而,现有的欧洲RPV系统数据集在空间覆盖范围和精度方面往往存在局限性,尤其是在建筑风格多样的地区。本研究提出了一种新颖的识别RPV系统的方法,该方法采用基于高分辨率航空影像和建筑物登记数据训练的卷积神经网络(CNN)。与传统的基于图像切片的方法不同,我们提出了一种逐栋建筑的处理方式,确保对每栋建筑进行独立评估。该模型在代表多种屋面材料和城市类型的五个法国省份进行了训练和验证。结果显示预测结果与注册的RPV系统之间具有高度相关性,但检测性能随屋面材料的不同而有所差异——在瓦片屋顶上的检测精度优于石板屋顶。当应用于整个法国本土领土时,该模型处理了超过4000万栋建筑的影像,识别出约60万个RPV系统。在评估结果准确性时,考虑了数据质量及地方城市特征等因素。所有数据和模型均已公开,可供进一步研究和应用。

English Abstract

Abstract With the rapid expansion of Rooftop Photovoltaic (RPV) systems, accurately identifying the location of these installations has become essential for urban planning, grid management, and socio-economic analysis. However, existing European datasets of RPV systems are often limited in both spatial coverage and precision, especially in regions with diverse architectural styles. This study presents a novel methodology for identifying RPV systems by employing a convolutional neural network (CNN) trained on high-resolution aerial imagery and building registry data. Alternatively to traditional tile-based methods, we propose a building-by-building approach, ensuring that each building is individually assessed. The model was trained and validated on five French departments representing a variety of roofing materials and urban typologies. It demonstrates a high correlation between predicted and registered RPV systems, though detection performance varies with roofing materials—achieving better accuracy on tiled roofs than slate roofs. When applied to the entire metropolitan French territory, the model processed images of more than 40 million buildings, identifying approximately 600,000 RPV systems. The results’ accuracy is evaluated, taking into account factors such as data quality and local urban characteristics. All data and the model are publicly available for further research and applications.
S

SunView 深度解读

该研究基于CNN深度学习的屋顶光伏系统识别技术,对阳光电源SG系列逆变器市场布局和iSolarCloud智慧运维平台具有重要价值。通过建筑级精准识别法国4000万建筑中的60万光伏系统,可为分布式光伏并网规划、储能系统(ST系列PCS/PowerTitan)配置优化提供数据支撑。该方法论可应用于电网管理和社会经济分析,助力阳光电源在欧洲异质化城乡场景下实现精准营销、预测性维护及虚拟电厂聚合管理,提升1500V系统和MPPT优化技术的区域适配性。