← 返回
储能系统技术 储能系统 ★ 5.0

利用相变复合材料的各向异性抑制锂离子电池热失控和实现快速充电

Harnessing anisotropy of phase change composites for taming thermal runaway and fast charging of lithium-ion batteries

作者 Anirban Chakraborty · Jooyoung Lee · Choongho Yu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 389 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 锂离子电池 温度调控 热失控 热管理 热排出
语言:

中文摘要

摘要 在锂离子电池(LIB)中,将温度均匀地控制在自燃点以下对于实现最佳性能并避免潜在的热失控至关重要。局部热量积聚或热点现象凸显了有效热管理的必要性,这要求在通过细胞间通常插入的隔层材料将热量快速排散至外部散热器与限制相邻电池之间的热传播之间取得精细平衡。本研究提出了一种新颖的策略,采用具有双热导率(k)的层压复合材料:面内高k值以实现高效的热量排出,面外低k值以抑制热扩散。该方法利用层压材料的各向异性,被动应对快速充电过程中热点管理和防止热失控传播的挑战。虽然高k值复合材料能够迅速传热,但可能因将热量传递至邻近电池而意外引发热失控;相反,低k值复合材料则会阻碍热量散失,导致严重的热量积聚。所提出的双k值方法实现了平衡,在优化向散热器排热的同时,限制了电池间的热传播。膨胀石墨促进了面内热传导,而其间存在的空气间隙则降低了面外热传导。实验结果表明,采用面内和面外热导率分别为30和0.5 W·m⁻¹·K⁻¹的高各向异性隔层复合材料,可有效抑制热失控的传播,使相邻电池表面温度保持在200 °C自燃温度以下。我们的研究结果强调了根据实际需求定制隔层材料热性能的重要性,以在滥用条件下高效平衡锂离子电池中的热量传递。这种定制对于提升电池系统的热管理能力及整体安全性至关重要。本研究所提出的方法有助于推动锂离子电池在多种应用场景中的安全可靠部署。

English Abstract

Abstract Regulating temperature uniformly below self-ignition point in lithium-ion battery (LIB) is paramount for optimal performance and to avert potential thermal runaways. Localized heat accumulations or hot spots underscore the need for effective thermal management, demanding a delicate balance between rapid heat expulsion to an external sink and limiting heat propagation between neighboring cells using interstitial sheets typically placed between cells. This study presents a novel strategy employing laminate composites with dual thermal conductivities (k): high k In-plane for efficient heat expulsion and low k Out-of-plane to curb heat spread. The approach exploits laminate anisotropy to passively address the challenges of managing hot spots during fast charging and preventing thermal runaway propagation. High k composites, while prompt in heat transfer, can inadvertently trigger thermal runaway by propagating heat to neighboring cells. Conversely, low k composite hinder dispersion, causing severe heat accumulation. The proposed dual k approach strikes a balance, optimizing heat dissipation to a sink while restricting heat propagation between the cells. Expanded graphite promotes the in-plane thermal conduction while air gap in between reduces the out-of-plane heat conduction . Our results suggest that interstitial composites with high anisotropy whose k In-plane and k Out-of-plane are 30 and 0.5 W·m −1 ·K −1 , respectively, could mitigate thermal runaway propagation, maintaining the surface of adjacent cells below the self-ignition temperature of 200 °C. Our findings underscore the importance of customizing the thermal properties of interstitial materials to efficiently balance heat transfer in LIBs, especially under abuse conditions. This customization is vital for enhancing the thermal management and overall safety of these battery systems. The proposed approach contributes to the safe and reliable deployment of LIBs across diverse applications.
S

SunView 深度解读

该各向异性相变复合材料技术对阳光电源储能系统具有重要应用价值。针对PowerTitan等大规模储能产品,面内高导热(30 W·m⁻¹·K⁻¹)可快速将电芯热量导向液冷板,面外低导热(0.5 W·m⁻¹·K⁻¹)有效阻隔簇间热蔓延,可优化ST系列PCS的电池热管理策略。该技术在快充工况下抑制热点积聚,在热失控场景下将邻近电芯温度控制在200°C以下,可提升储能系统安全等级,并为EV充电桩的大功率快充应用提供电池包热设计参考,契合阳光电源储能安全与充电技术发展方向。