← 返回
基于韧性移动储能资源的微电网构建方法——考虑电-交-信网络互依性
Resilient mobile energy storage resources-based microgrid formation considering power-transportation-information network interdependencies
| 作者 | Jian Zhong · Chen Chen · Haochen Zhang · Wentao Shen · Zhong Fan · Dawei Qiu · Zhaohong Bi |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 389 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Develop a PTIN-interacting model to demonstrate the ‘chained recovery effect’ in MESR-based restoration of urban PDNs. |
语言:
中文摘要
摘要 智慧城市技术的发展加深了电力、交通与信息网络(PTINs)之间的相互作用。当前基于移动储能资源(MESR)的配电网(PDN)恢复方案通常忽略了PTINs之间的互依赖关系,从而制约了负荷的高效恢复。本文梳理了PTINs中若干关键交互因素,包括电力供需、交通效率、通信覆盖能力、电动汽车(EV)部署能力以及配电网可控性。在此基础上,构建了一个PTIN交互模型,用以揭示基于MESR恢复过程中的‘链式恢复效应’。进一步地,提出一种利用电动汽车(EVs)、移动储能系统(MESSs)和无人机(UAVs)的滚动优化负荷恢复方案,以实现对失电负荷的供电恢复。该算法通过评估电力负荷、交通节点与通信节点的重要性及其相互依赖关系,优化负荷恢复策略;并采用滚动时域机制,根据极端事件过程中PTINs状态的变化以及前期操作对PTINs的恢复影响,动态重新计算后续恢复方案。该方法能够适应动态变化的环境,提升负荷恢复效果,增强恢复策略在不确定性条件下的适应能力,并提高其实用性。此外,本文还开发了一个PTIN集成化联合仿真平台,用于验证所提恢复方法的有效性。在该平台上开展的案例研究表明,所提出的方案在恢复负荷容量和恢复速度方面均表现出显著提升。
English Abstract
Abstract The advancement of smart city technologies has deepened the interactions among power, transportation, and information networks (PTINs). Current mobile energy storage resource (MESR) based power distribution network (PDN) restoration schemes often overlook the interdependencies among PTINs, thus hindering efficient load restoration. This paper outlines the key interacting factors within PTINs, including power supply demand, traffic efficiency, communication coverage, electric vehicle (EV) deployment capability, and PDN controllability. We further develop a PTIN-interacting model to demonstrate the ‘chained recovery effect’ in MESR-based restoration. Building on this, we propose a rolling optimization load restoration scheme utilizing EVs, mobile energy storage systems (MESSs), and unmanned aerial vehicles (UAVs), to restore the power supply to loads. The algorithm optimizes the load restoration schemes by evaluating the criticality of power loads, transportation, and communication nodes and their interdependencies. It further dynamically recalculates subsequent restoration schemes based on the varying states of PTINs during extreme events and the recovery impacts of prior operations on the PTINs, using a rolling horizon. This approach adapts to changing conditions, improving load restoration, enhancing the solution’s adaptability to uncertainties during the restoration process, and increasing its practicality. Additionally, a PTIN-integrated co-simulation platform is developed to verify the effectiveness of the restoration methods. Case studies conducted on the platform show significant improvements in both the restored load capacity and restoration speed of the proposed scheme.
S
SunView 深度解读
该研究对阳光电源移动储能及微电网解决方案具有重要价值。论文提出的电力-交通-信息网络(PTIN)协同优化框架,可直接应用于ST系列PCS与PowerTitan储能系统的智能调度策略。移动储能系统(MESS)与电动汽车协同恢复供电的思路,为阳光电源充电桩产品与储能系统集成提供新方向。基于UAV的通信覆盖方案可增强iSolarCloud平台在极端事件下的监控能力。滚动优化算法可融入GFM控制策略,提升微电网孤岛运行的韧性。建议将PTIN耦合模型纳入储能EMS开发,实现交通路网与配电网的动态协同,增强移动储能资源调度的实用性与经济性。