← 返回
光伏发电技术 储能系统 ★ 5.0

一种新的智能控制与先进全局优化方法用于在复杂遮阴条件下提升光伏系统性能

A new intelligent control and advanced global optimization methodology for peak solar energy system performance under challenging shading conditions

作者 Xiqing Wei · Ambe Harrison · Abdulbari Talib Naser · Wulfran Fendzi Mbasso · Idriss Dagal · Njimboh Henry Alombah · Jangir K. Pradeep · Mohamed Shar · Mohammed A. El Meligy
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Revolutionary GMPPT algorithm for shaded PV systems with ultrafast convergence.
语言:

中文摘要

摘要 本文针对由部分遮阴条件(PSC)引起的光伏(PV)系统能量损失这一紧迫挑战展开研究,该问题是实现太阳能利用效率与可靠性最优化的关键障碍。研究提出了一种突破性的全局最大功率点跟踪(GMPPT)方法,旨在应对复杂遮阴场景下的动态变化,从而为最大化能量输出提供变革性解决方案。该方法的核心是“可信邻域识别机制”(Confident Neighborhood Identification Mechanism, CNIM),其理论基础在于:识别出围绕全局最大功率点(GMPP)的“可信邻域”,有助于实现对真实GMPP的连续且精确的跟踪。CNIM采用一种无需气候传感器的神经网络,在实时条件下计算各个光伏模块上的分布式最优工作点。随后,通过一个全局化算法整合这些结果,构建出可靠的GMPP区域,确保以100%的置信度实现准确跟踪。进一步的创新体现在有限两阶段跟踪(Finite Two-Stage Tracking, FTST)控制算法中,该算法将运行点快速预加速进入GMPP区域与精细调节相结合,以实现高精度跟踪,在动态遮阴条件下仅需18毫秒即可完成收敛。在超过200种遮阴模式下进行的实证评估表明,该方法具有极强的鲁棒性,实现了100%的GMPP识别置信度和平均99.87%的跟踪效率,优于当前最先进的元启发式算法,包括粒子群优化(PSO)、灰狼优化(GWO)、樽海鞘群优化(SSO)以及改进型差分进化算法(IDE)。与现有先进技术不同,所提出的系统无需依赖昂贵的气候传感器,仅使用电气测量信号,从而提升了系统的经济性和实时应用能力。研究结果凸显了本方法在多种环境条件下提升光伏系统可靠性的重大意义。通过有效缓解遮阴导致的能量损失并确保高精度的功率点跟踪,这一新型方法标志着向可持续、高效太阳能部署迈出了重要一步,具备满足现代可再生能源系统需求的能力。

English Abstract

Abstract This paper addresses the pressing challenge of mitigating energy losses in photovoltaic (PV) systems caused by partial shading conditions (PSC), a critical barrier to achieving optimal solar energy efficiency and reliability. The study introduces a breakthrough Global Maximum Power Point Tracking (GMPPT) methodology, designed to navigate the intricate dynamics of complex shading scenarios, thereby offering a transformative approach to maximizing energy yield. The methodology is built around the Confident Neighborhood Identification Mechanism (CNIM), which operates on the hypothesis that identifying a “confident neighborhood” around the GMPP facilitates uninterrupted and precise tracking of the true GMPP. CNIM leverages a climatic sensorless neural network to compute distributed optimal points across individual modules in real time. A globalization algorithm consolidates these results to establish a reliable GMPP zone, ensuring 100 % confidence in accurate tracking. Further innovation is realized in the Finite Two-Stage Tracking (FTST) control algorithm, which combines rapid pre-acceleration of the operating point into the GMPP zone with fine-tuned adjustments for precision tracking, achieving convergence in as little as 18 milliseconds under dynamic shading conditions. Empirical evaluations conducted on over 200 shading patterns demonstrate the methodology's robustness, achieving 100 % GMPP identification confidence and an average tracking efficiency of 99.87 %, outperforming state-of-the-art metaheuristic algorithms, including particle swarm optimization (PSO), Grey Wolf Optimization (GWO), Salp Swarm Optimization (SSO), and Improved Differential Evolution (IDE). Unlike state-of-the-art approaches, the proposed system eliminates the reliance on expensive climatic sensors, using only electrical measurements, which enhances affordability and real-time applicability. The results underscore the relevance of this study in advancing the reliability of PV systems in diverse environmental conditions. By mitigating shading-induced energy losses and ensuring high tracking precision, this novel methodology marks a significant stride toward sustainable and efficient solar energy deployment, capable of meeting the demands of modern renewable energy systems .
S

SunView 深度解读

该GMPPT智能控制技术对阳光电源SG系列光伏逆变器具有重要应用价值。其基于神经网络的无气候传感器方案与我司多路MPPT优化技术高度契合,可显著提升复杂遮挡场景下的发电效率。CNIM置信邻域识别机制可融入iSolarCloud平台实现智能诊断,FTST双阶段追踪算法(18ms收敛速度)可优化现有MPPT控制策略。该方法99.87%的追踪效率为1500V大功率系统在山地、屋顶等复杂工况下的性能提升提供技术路径,支撑公司智能光储一体化解决方案竞争力。