← 返回
PV Segmenter:一种频率引导的边缘感知网络用于遥感影像中的分布式光伏分割
PV Segmenter: A frequency-guided edge-aware network for distributed photovoltaic segmentation in remote sensing imagery
| 作者 | Siyuan Wanga · Zhenfeng Shaoa · Dongyang Houb · Bowen Caic |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 393 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel frequency-guided edge-aware network for distributed PV segmentation. |
语言:
中文摘要
准确地利用遥感影像定位和测量分布式光伏(PV)系统的规模,对于评估装机容量和预测太阳能发电潜力至关重要。然而,现有的光伏提取方法主要依赖于空间域学习策略,难以捕捉小规模光伏系统复杂的边界和细微结构特征。本文提出PV Segmenter,一种频率引导的边缘感知网络,通过引入频域学习机制来提升分布式光伏系统中的边缘检测与模式识别能力。具体而言,设计了一种频率增强型边缘检测模块,利用频域解耦技术提取与光伏边界相关的边缘语义信息;随后,边缘引导的特征判别模块将边缘线索注入多层级语义特征中,以优化结构语义表征。此外,设计了上下文感知的跨层融合模块,以保留小型光伏面板的关键细节,从而促进鲁棒的边缘检测性能。最后,我们引入一种具有深度监督的对象-边缘混合损失函数,联合优化光伏对象与边缘特征。在两个分布式光伏数据集上的实验结果表明,与九种基准方法相比,PV Segmenter将交并比(IoU)提升了1.96%至9.61%。所提方法在精确识别小规模光伏系统及有效界定复杂边界方面展现出良好潜力,为可再生能源评估与智能电网规划提供了可行的技术方案。
English Abstract
Abstract Accurate localization and sizing of distributed photovoltaic (PV) systems using remote sensing imagery are critical for assessing installed capacity and forecasting solar generation potential. However, existing PV extraction methods predominantly rely on spatial-domain learning strategies, which struggle to capture the complex boundaries and fine details of small-scale PV systems. In this paper, we propose PV Segmenter , a frequency-guided edge-aware network that employs frequency-domain learning to improve edge detection and pattern recognition in distributed PV systems. Specifically, a frequency-enhanced edge detection module is designed to leverage frequency-domain decoupling for the extraction of edge semantics related to PV boundaries. An edge-guided feature discrimination module subsequently injects edge cues into multi-level semantic features to refine structural semantic representation . Furthermore, a context-aware cross-layer fusion module is designed to preserve critical details of small PV panels , facilitating robust edge detection. Finally, we introduce an object-edge hybrid loss function with deep supervision that jointly optimizes PV object and edge features. Experimental results on two distributed PV datasets demonstrate that PV Segmenter improves the Intersection over Union (IoU) by 1.96 % to 9.61 % compared to nine benchmark methods. The proposed method shows promise for accurately identifying small-scale PV systems and effectively defining complex boundaries, offering a viable solution for renewable energy assessment and smart grid planning.
S
SunView 深度解读
该频域引导的分布式光伏识别技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过遥感影像精准定位小型光伏系统边界,可增强SG系列逆变器的分布式电站资产管理能力,优化MPPT算法对复杂屋顶场景的适配性。边缘检测模块可辅助PowerTitan储能系统进行区域发电潜力评估,支撑虚拟电厂的容量预测。该方法为智能电网规划提供高精度数据源,助力阳光电源构建从电站识别、发电预测到并网控制的全链条解决方案,提升分布式能源管理的数字化水平。