← 返回
光伏发电技术 储能系统 ★ 5.0

评估城市光伏集成的双重辐射效应:反照率变化与辐射强迫动态

Assessing the dual radiative consequences of urban PV integration: Albedo change and radiative forcing dynamics

作者 Yilong Zhou · Shredatta Marath · Miro Zeman · Olindo Isabell · Hesan Ziar
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A LiDAR-based workflow is developed to quantify urban albedo and radiative forcing (RF).
语言:

中文摘要

在城市地区集成光伏(PV)系统可增强本地可再生能源电力生产,但由于光伏组件反射率较低,也会导致地表反照率降低。反照率的下降增加了地球对能量的吸收,从而产生正的辐射强迫(RF);而光伏电力替代化石燃料发电则通过避免二氧化碳排放产生负的辐射强迫。本研究采用一种新颖的工作流程,量化了城市屋顶光伏部署的净辐射强迫影响。该工作流程结合了两个模型:(1)几何光谱反照率(GSA)模型,利用LiDAR数据和地理配准的材料分布图,模拟光伏集成前后的反照率变化;(2)基于简化天际线的光伏模型,利用LiDAR提取的屋顶几何结构估算年光伏发电量。该方法应用于荷兰代尔夫特市,模拟得到代尔夫特市的平均反照率为0.1584,与MODIS观测值(0.1493)相差6.12%。在所有屋顶全面部署光伏的情况下,全市平均反照率降至0.1557,对应产生3.53 × 10^−8 W/m²的正辐射强迫。假设电网碳强度为454 gCO₂-eq/kWh,光伏电力所产生的负辐射强迫可在约40天内抵消该正辐射强迫。然而,在低碳电网情景下(30 gCO₂-eq/kWh),抵消时间将延长至623天,表明在未来的深度脱碳情景中,反照率降低带来的正辐射强迫将变得更加显著。本研究有助于深入理解城市光伏部署的气候影响,并为光伏系统在缓解气候变化方面的实际潜力提供了科学依据。

English Abstract

Abstract Integrating photovoltaic (PV) systems in urban areas enhances local renewable electricity production but also reduces surface albedo due to the lower reflectivity of PV panels. This albedo reduction increases Earth’s energy absorption, resulting in positive radiative forcing (RF), while the displacement of fossil fuels by PV electricity leads to negative RF through avoided CO 2 emissions. This study quantifies the net RF impact of urban rooftop PV deployment using a novel workflow. This proposed workflow combines: (1) a geometric spectral albedo (GSA) model, using LiDAR data and geo-referenced material maps to simulate albedo changes before and after PV integration; and (2) a simplified skyline-based PV model, using LiDAR-derived roof geometry to estimate annual PV electricity generation. The method is applied to the city of Delft, the Netherlands, and the average simulated albedo of Delft is 0.1584, differing by 6.12 % from MODIS observations (0.1493). Full PV integration on all rooftops reduces the city-wide albedo to 0.1557, corresponding to a positive RF of 3.53 × 10 − 8 W/m 2 . This can be offset in about 40 days by negative RF from PV electricity, assuming a grid carbon intensity of 454 gCO 2 -eq/kWh. However, under a low-carbon grid scenario (30 gCO 2 -eq/kWh), the payback time increases to 623 days, indicating that positive RF from albedo reduction becomes more relevant in future decarbonized scenarios. This study contributes to understanding the climatic implications of urban PV deployment and offers insights into the realistic potential of PV systems in mitigating climate change.
S

SunView 深度解读

该研究揭示城市光伏部署的反照率降低效应及辐射强迫动态平衡机制,对阳光电源SG系列逆变器和iSolarCloud平台具有重要指导意义。研究表明低碳电网场景下反照率负效应凸显,这要求提升系统发电效率以缩短气候收益回收期。可启发我们优化MPPT算法、采用SiC功率器件降低损耗,并通过iSolarCloud平台结合LiDAR数据进行屋顶几何建模,实现精准发电预测与碳减排量化评估,为城市光伏项目提供全生命周期气候效益分析能力,增强ST储能系统与SG逆变器协同优化的环境价值论证。