← 返回
电动汽车驱动 机器学习 ★ 4.0

可解释且高精度的基于三级树的集成混合模型用于预测光电化学电池中的光电流密度和电极电势:理论支持并由实验数据外部验证

Interpretable and highly accurate tertiary tree-based ensemble hybrid models for the prediction of photocurrent density and electrode potential in PEC cell: Theoretically supported and externally validated by experimental data

作者 Nepal Sahua · Chandrashekhar Azadb · Uday Kumar
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 电动汽车驱动
技术标签 机器学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 Two newly M5 M6 interpretable tertiary hybrid models were developed.
语言:

中文摘要

摘要 光电流密度(J)以及相对于可逆氢电极的电势(V RHE)是评估用于绿色氢气生产的光电化学(PEC)系统性能的关键参数。本研究旨在构建一种高精度、可解释、稳健且通用的机器学习模型,用于预测J和V RHE,并通过理论支持与外部验证加以证实。在本研究中,首先利用贝叶斯优化(BO)方法将两个单模型(M1, M2)结合,基于包含2593条记录的数据集开发了两个二元混合模型(M3, M4),随后进一步构建了两个用于预测J和V RHE的三级混合模型(M5, M6)。采用五组独立的实验数据集和三个基于物理机制的模型(PBM)(P1–3)对J的预测结果进行外部验证(EV),以评估所有模型的泛化能力。同时,采用SHAP技术解释各特征在单模型与混合模型中对J和V RHE预测的贡献程度。在J的预测方面,M4、M5和M6实现了迄今为止最高的预测精度,其R²均大于0.977(迄今报道的最佳精度),其中M5和M6表现尤为突出,R²超过0.999。M5被确定为所有模型中泛化能力最强的模型。有趣的是,P3被发现是与所有基于机器学习的模型相关性最高的物理模型。此外,在V RHE的预测中也取得了迄今为止最高的精度,R²达到大于0.999的水平(此前报道的最佳R²值为0.712)。在使用五个未见过的实验数据集对外部V RHE进行验证时,M6表现出最优的性能。针对J和V RHE的预测,本研究利用SHAP技术明确了各个特征在单模型及混合模型中的贡献情况。带隙、电极面积和实验电势被确定为影响J预测的前六位关键参数;而实验电势也被列为影响V RHE预测的前三项最重要特征之一。此外,本研究还通过多种统计技术深入探讨了三级混合模型的成功机制。

English Abstract

Abstract Photocurrent density (J) and potential with respect to reverse hydrogen electrode (V RHE ) are crucial parameters for evaluating the performance of a PEC system for green hydrogen production. The study aims to create a highly accurate, interpretable, robust and versatile machine learning model for the prediction of J and V RHE supported by theory and external validation. In this study, at first, we developed two binary hybrid models (M3, M4) by using BO optimized two single models (M1, M2) and a dataset of 2593 records followed by the development of two tertiary hybrid models (M5, M6) for J and V RHE prediction. The generalizability of all models was assessed applying external validation (EV) technique using five experimental datasets and three physics-based models (PBM) (P1-3) for J. The SHAP technique was utilized to explain the features contribution in hybrid and single models for J and V RHE prediction. In the prediction of J, M4, M5 and M6 achieved the best ever accuracy in terms of R 2 >0.977 (best ever reported accuracy) and M5, M6 achieved the highest among all with R 2 > 0.999. M5 was found to the best generalized models among all models. Interestingly, P3 was found to be the best correlated PBM with all ML based models. Further, the best ever accuracy in terms of R 2 >0.999 was achieved for V RHE prediction (best ever reported value of R 2 =0.712). In EV of V RHE using five unseen experimental datasets, M6 was the best performing model. In the prediction of J and V RHE , the contribution of each feature for single and hybrid models were established using SHAP technique. Bandgap, electrode area, experimental potential were found within the top six influencing parameters in J prediction. Experimental potential was found within the top three influencing features in V RHE prediction. Further, the success of tertiary models was well explored using multiple statistical techniques.
S

SunView 深度解读

该光电化学制氢预测模型对阳光电源绿氢储能系统具有重要参考价值。研究中的机器学习混合模型(R²>0.999)可应用于ST系列储能变流器的氢储能场景优化,通过预测光电流密度和电极电位提升制氢效率。SHAP可解释性分析揭示的带隙、电极面积等关键参数,可指导iSolarCloud平台开发光伏制氢预测性维护算法,优化SG逆变器与电解槽的功率匹配策略,推动光伏-氢能-储能一体化解决方案的智能化控制。