← 返回
储能系统技术 储能系统 LLC谐振 ★ 4.0

高密度NOMA网络中网络切片的子信道分配和功率分配优化:Q学习方法

Optimizing Subchannel Assignment and Power Allocation for Network Slicing in High-Density NOMA Networks: A Q-Learning Approach

作者 Suhare Solaiman
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 LLC谐振
相关度评分 ★★★★ 4.0 / 5.0
关键词 网络切片 非正交多址接入 资源分配 优化算法 服务质量
语言:

中文摘要

高密度环境下连接设备数量增长给不同网络切片服务带来严峻挑战,如超可靠低延迟通信和大规模机器类型通信,每种服务有独特QoS要求。主要困难是分配网络资源最大化频谱利用同时满足mMTC大规模连接需求和URLLC超可靠低延迟通信需求。本研究利用非正交多址网络切片在各种服务间共享无线资源,改善大规模设备部署连接性。提出优化算法用于高密度NOMA网络中URLLC和mMTC设备的子信道分配和功率分配,采用Q学习算法优化决策过程确保URLLC和mMTC设备间高效资源共享并满足各自QoS要求。大量仿真显示所提算法在动态场景下灵活可扩展,在和速率方面优于随机和穷举搜索算法,和速率提升约23.44%。

English Abstract

The growing number of connected devices in high-density environments poses serious challenges for accommodating and managing these devices across different network slicing services, such as ultra-reliable low-latency communication (URLLC) and massive machine-type communication (mMTC). Because every service has distinct quality of service (QoS) requirements, it is essential to ensure the seamless coexistence of these devices. The main difficulty is allocating network resources to maximize spectrum utilization while meeting mMTC’s massive connectivity demands and offering URLLC’s demand for ultra-reliable, low-latency communication. In this study, non-orthogonal multiple access (NOMA) network slicing is utilized to share radio resources among various services, thereby improving connectivity for large-scale device deployments. When these services exist in high-density NOMA environments characterized by high network congestion with radio resource sharing, the level of difficulty increases significantly. To address these issues, an optimization algorithm is proposed for subchannel assignment and power allocation in NOMA high-density networks for URLLC and mMTC devices. The solution adopts a Q-learning algorithm to optimize decision-making processes and ensure efficient resource sharing between URLLC and mMTC devices, while satisfying their distinct QoS requirements. Extensive simulations demonstrate that the proposed algorithm is flexible and scalable in dynamic scenarios, outperforming random and exhaustive search algorithms in high-density NOMA networks in terms of sum rates. The sum rate of the proposed algorithm increased by approximately 23.44% compared to that of the exhaustive search algorithm.
S

SunView 深度解读

该网络切片优化技术可应用于阳光电源虚拟电厂通信系统。阳光管理的大规模分布式光伏储能资源需要低延迟高可靠的通信网络,该NOMA和Q学习方法可优化海量设备接入和实时调度指令传输。阳光可将该技术应用于iSolarCloud平台边缘通信,实现储能聚合和需求响应,提升系统实时响应能力和调度灵活性。