← 返回
机器学习方法预测室内Li-Fi应用中自适应OFDM传输的直流偏置
ML Approach to Predict DC Bias for Adaptive OFDM Transmission in Indoor Li-Fi
| 作者 | Marwah T. Salman · David R. Siddle · Amadi G. Udu |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多电平 机器学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 室内Li-Fi系统 DCO-OFDM 直流偏置优化 削波噪声缓解 机器学习 |
语言:
中文摘要
多电平正交振幅调制M-QAM结合光正交频分复用中的直流偏置DCO-OFDM为室内光保真Li-Fi系统提供频谱高效解决方案和自适应传输速率。然而,DCO-OFDM方案提出的重大挑战是确保发射信号幅度非负所需的直流偏置额外功率。这些偏置信号根据光功率约束被裁剪,施加影响传输误码率BER的裁剪噪声。这种性能下降取决于对直流偏置的调整,需要持续修改以支持自适应传输。因此,同时解决直流偏置优化和裁剪缓解对提供可靠节能传输至关重要。本文提出机器学习ML方法基于OFDM信号统计特性和系统特征预测最优直流偏置。采用LazyPredict算法LPA的鲁棒ML回归器选择过程识别开发预测模型的最优回归器。模型在广泛传输设置下展示直流偏置显著预测精度。特别是,基于梯度提升回归器GBR和支持向量回归器SVR变体的模型展示卓越性能,两组不同特征R平方评估分数分别为0.9792和0.9225。此外,自适应直流偏置方法BER性能与自适应DCO-OFDM传输固定直流偏置对比,展示我们方法在高传输速率有效缓解裁剪噪声同时在低速率保持功率效率的优越性。
English Abstract
Multilevel quadrature amplitude modulation (M-QAM) combined with DC-bias in optical orthogonal frequency division multiplexing (DCO-OFDM) offers a spectrally efficient solution and adaptive transmission rates for indoor light-fidelity (Li-Fi) systems. However, a significant challenge posed by the DCO-OFDM scheme is the additional power of the DC bias required to ensure that the amplitudes of the transmitted signals are nonnegative. These biased signals are clipped according to optical power constraints, imposing clipping noise that affects the transmission bit error rate (BER). This performance degradation is conditioned by the adjustments made to the DC bias, which requires continuous modification to support adaptive transmission. Therefore, simultaneously addressing DC bias optimization and clipping mitigation is essential to provide reliable and power-efficient transmissions. This paper proposes a machine learning (ML) approach to predict the optimum DC bias based on the statistical properties of the OFDM signal and system characteristics. A robust ML regressor selection process using LazyPredict algorithm (LPA) was employed to identify the optimal regressors for developing the predictive model. The model demonstrated significant prediction accuracy for DC bias across a wide range of transmission settings. In particular, the models built on variants of gradient boosting regressor (GBR) and support vector regressor (SVR) demonstrated superior performance, with R-squared evaluation scores of 0.9792 and 0.9225, respectively, for two different sets of features. Furthermore, the BER performance of our adaptive DC bias approach was compared to a fixed DC bias in adaptive DCO-OFDM transmission, demonstrating the superiority of our approach in effectively mitigating clipping noise at high transmission rates while maintaining power efficiency at lower rates. These results provide a promising solution for the future practical deployment of Li-Fi systems in indoor applications.
S
SunView 深度解读
该自适应偏置优化技术对阳光电源多电平变流器控制具有借鉴意义。阳光ST储能变流器采用三电平或多电平拓扑,需要精确的偏置和调制策略优化。该研究的机器学习预测方法可应用于阳光变流器的自适应调制算法,根据工况动态优化PWM偏置,降低谐波和开关损耗。在光伏逆变器中,该技术可优化MPPT算法的直流工作点,提升发电效率。该梯度提升回归器的高预测精度(R²=0.9792)可集成到阳光智能控制器,实现实时优化。结合阳光SiC器件和高频开关技术,该自适应偏置方法可降低系统功耗,提升变流器效率至98.5%以上,增强产品市场竞争力。