← 返回
电动汽车驱动 ★ 4.0

燃料电池电动汽车的性能与能耗分析

Performance and Energy Analysis of a Fuel Cell Electric Vehicle

作者 Habip Sahin · Hikmet Esen
期刊 IEEE Access
出版日期 2025年1月
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 电动汽车 燃料电池 混合动力 能耗模拟 车辆效率
语言:

中文摘要

20世纪以来,个人交通工具的普及带来了严重的环境问题,推动了向电动化转型的趋势。燃料电池电动汽车因其续航能力强、加注时间短和零排放等优势,被视为未来主流技术之一。由于燃料电池动态响应较慢,需与高功率密度储能装置构成混合动力系统。本文基于Matlab建立了包含80 kW燃料电池堆和1.97 kWh电池组的中型轿车模型,在WLTP Class 3循环下仿真结果显示:等效汽油油耗为2.15 L/100 km,续航达859.2 km,驱动电机平均效率为93.4%,整车基于氢气高热值的综合效率为56.2%,碳排放当量为75.1 gCO2e/km。

English Abstract

In the last century, individual transportation vehicles become much more common and they cause great environmental problems. Renewable and sustainable energy solutions will help reduce these environmental problems. Thus, there is a trend towards electric vehicle from internal combustion engine vehicle. Fuel cell electric vehicles, with their competitive driving range, short refueling time and zero emissions, are considered the most likely solution among the vehicle technologies of the future. Since the fuel cell is late to meet the sudden power requirements, it must be hybridized with a second energy device having high power dynamics. In this study, a mid-size passenger vehicle, having 80 kW fuel cell stack supported by a 1.97 kWh battery pack, is modeled with Matlab. The vehicle is simulated on Worldwide Harmonized Light Vehicle Test Procedure (WLTP) Class 3 driving cycle and fuel consumption and range values are 2.15 L/100 km as gasoline equivalent and 859.2 km, respectively. The average efficiency of the internal permanent magnet synchronous motor providing vehicle propulsion is 93.4% throughout the cycle. The overall efficiency of the vehicle is found to be 56.2%, based on the higher heating value of the consumed hydrogen. The emission value of the vehicle is 75.1 gCO2e/km according to the average hydrogen production emission intensity.
S

SunView 深度解读

该燃料电池混合动力系统的能量管理策略对阳光电源新能源汽车产品线具有重要参考价值。研究中燃料电池与电池组的协同控制方案可应用于车载OBC充电机和电机驱动系统的功率分配优化,特别是针对燃料电池动态响应慢的特性,通过储能系统快速补偿功率波动的思路与阳光电源ST系列储能变流器的能量缓冲技术高度契合。93.4%的驱动电机效率和56.2%的整车综合效率为电机驱动系统的SiC功率器件应用和MPPT算法优化提供了性能基准。此外,该混合动力架构的能量流管理逻辑可移植到充电桩与储能系统的协同控制中,提升充电站的功率调度效率和电网友好性。