← 返回
电动汽车驱动 储能系统 充电桩 ★ 5.0

多目标方法在大都市配电网中分布式屋顶光伏接入下电动汽车充电站的最优定容与选址

Multi-Objective Approach for Optimal Sizing and Placement of EVCS in Distribution Networks With Distributed Rooftop PV in Metropolitan City

作者 Syechu Dwitya Nugraha · Mochamad Ashari · Dedet Candra Riawan
期刊 IEEE Access
出版日期 2025年1月
技术分类 电动汽车驱动
技术标签 储能系统 充电桩
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电动汽车充电站 分布式发电 优化方法 网络利用率 车网互动
语言:

中文摘要

本研究探讨了在含分布式电源(DG)的配电网中,电动汽车充电站(EVCS)的最优容量与位置规划问题。不当的EVCS配置可能导致网络过载、损耗增加及电压越限。采用印度尼西亚典型城市商业区配电网为案例,提出一种基于多目标函数的混合遗传算法—改进樽海鞘群算法(HGAMSSA)进行优化求解。设定了三种EVCS配置场景:分别包含1、2、3级充电设施,并均集成DG。仿真结果表明,在电网到车辆(G2V)模式下,网络利用率最高可达79.00%,显著高于基础负荷的29.46%;在车辆到电网(V2G)模式下,EV反送电能达0.91 MWh,同时配电网从屋顶光伏获取10.036 MWh电能。

English Abstract

The optimal sizing and location of electric vehicle charging station (EVCS) integrated with distributed generation (DG) in the distribution network are the subject of this study. In modern electric power systems, the integration of EVCS and DG must be carefully planned. Inappropriate sizing and location of EVCS can cause network overload, increase power losses, and allow for voltage variations outside the standard. This study adopts a reference distribution network that is representative of a typical business distribution network in a metropolitan city in Indonesia. To resolve the issue of determining the size and location of EVCS, the hybrid genetic algorithm-modified salp swarm algorithm (HGAMSSA) optimization method with multi-objective function is implemented. There are three scenarios used when determining the size and placement of EVCS. In the first scenario, the EVCS comprises chargers at levels 1, 2, and 3, with DG integration. In the second scenario, EVCS is comprised of level 2 and level 3, with DG integration. While in the third scenario, EVCS only consists of level 3 chargers with DG integration. The simulation results indicate that network utilization can be optimized at 79.00%, 75.53%, and 76.37% when electric cars (EV) operate in grid to vehicle (G2V) mode, compared to a base load of 29.46%. In vehicle to grid (V2G) mode, the energy supplied by the electric vehicle (EV) via the EVCS is 0.91 MWh. Additionally, the distribution network receives 10.036 MWh of electricity from rooftop photovoltaic (PV).
S

SunView 深度解读

该研究的EVCS与分布式光伏协同优化技术对阳光电源充电桩产品线及光储充一体化解决方案具有重要应用价值。研究提出的多目标优化算法可直接应用于阳光电源充电站规划系统,指导城市商业区充电桩的容量配置与选址决策。V2G模式下的双向能量管理策略可集成到ST系列储能变流器与车载OBC产品中,实现充电桩、屋顶光伏与电网的协同调度。研究显示的79%网络利用率提升验证了光储充协同的经济性,为阳光电源iSolarCloud平台开发充电站智能规划模块提供算法支撑,助力构建城市级分布式能源网络优化方案。