← 返回
电动汽车驱动 充电桩 ★ 5.0

量化基于统计相似网络的虚拟车对车能量共享所提供的电网灵活性

Quantifying grid flexibility provision of virtual vehicle-to-vehicle energy sharing using statistically similar networks

作者 Wei Gan · Yue Zhou · Jianzhong Wu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 电动汽车驱动
技术标签 充电桩
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A virtual vehicle-to-vehicle energy sharing framework is firstly proposed.
语言:

中文摘要

摘要 电动汽车(EV)保有量的迅速增长给电力系统带来了显著的容量挑战,但通过有效的充电管理,电动汽车亦可作为灵活资源,凸显了相关创新解决方案的必要性。本文提出了一种虚拟车对车(V-V2V)框架,使电动汽车能够在公共充电站或家庭等场景下,只要连接至同一配电网,即可实现彼此之间的能量共享。该框架摆脱了传统车对车(V2V)模式中对物理邻近性和点对点匹配的要求,通过协调电动汽车充电与其他负荷需求及光伏发电,增强了电网灵活性并缓解了容量压力。为量化V-V2V框架所提供的灵活性,本文实施并改进了统计相似网络方法,该方法基于生成的具有相似电气与拓扑特征的网络进行仿真,而非依赖单一实际网络。利用图论方法,该技术在保持电气和拓扑特性及其内部相关性的统计相似性的同时,确保了网络仿真的实用性。为进一步提高灵活性量化精度,本文引入了一种自下而上、高时间粒度的电动汽车出行与插拔电行为模型,充分考虑了不同用户类型的特点。采用蒙特卡洛模拟方法,通过对电动汽车用户进行分类,详细分析其出行与充电行为。所提方法的有效性通过基于真实英国配电网数据的数值结果进行了验证。

English Abstract

Abstract The rapid rise in electric vehicle (EV) adoption presents significant capacity challenges for power grids, but with effective charging management, EVs can also serve as flexible resources, underscoring the need for relevant innovative solutions. This paper proposes a virtual vehicle-to-vehicle (V-V2V) framework, enabling EVs to share energy with each other, either at public charging stations or home, as long as they are connected to the same distribution network. The framework eliminates the need for physical proximity and peer-to-peer matching seen in traditional V2V, enhancing grid flexibility and reducing capacity pressures by harmonizing EV charging with other demands and photovoltaic generation. To quantify the flexibility provision of the V-V2V framework, this paper implements and enhances the statistically similar networks method, where simulations are based on generated networks that share similar electrical and topological characteristics, rather than relying on a single network. Using graph theory, the method preserves statistical similarity in both electrical and topological features, along with their internal correlations, ensuring the practicality of the network simulations. To improve flexibility quantification accuracy, this paper introduces a bottom-up, high-granularity model of EV travel and plugging patterns that accounts for diverse user archetypes. Monte Carlo simulations are employed to provide a detailed analysis of travel and charging behaviors by categorizing EV users. The effectiveness of the proposed method is tested through numerical results using real-world UK distribution networks.
S

SunView 深度解读

该虚拟车-车能量共享(V-V2V)技术对阳光电源充电桩及储能业务具有重要启示。论文提出的配电网级EV柔性调度框架,可与我司ST系列PCS及PowerTitan储能系统协同,将分散充电桩聚合为虚拟储能资源池。其统计相似网络建模方法可优化iSolarCloud平台的负荷预测算法,结合蒙特卡洛用户行为分析,提升充电站选址与容量配置精度。V-V2V削峰填谷机制与光伏消纳场景高度契合,可增强SG逆变器+充电桩+储能的一体化解决方案竞争力,为构建源网荷储协同的柔性配电网提供技术路径。