← 返回
光伏发电技术 储能系统 ★ 5.0

提高光伏效率的创新技术:性能增强方法综述

Innovations in improving photovoltaic efficiency: A review of performance enhancement techniques

语言:

中文摘要

摘要 环境问题引发的对清洁能源日益增长的需求,使可再生能源技术特别是光伏(PV)系统成为可持续发电领域的前沿。光伏技术利用太阳能这一近乎无限的资源,以满足全球电力需求。尽管光伏系统具有安装便捷、维护成本低和快速发展等优势,但转换效率仍然是最大化能源输出的关键因素。本文对当前最先进的光伏效率提升技术进行了全面评述,涵盖冷却方法、移动式光伏系统、集成式光伏系统、材料创新以及优化策略等方面。通过分析面板温度、灰尘积聚和阴影等环境因素对系统性能的影响,本文识别出关键挑战,并探讨了改善光伏性能的前沿解决方案。基于对过去三年内发表的7200多篇研究论文的分析,本文详细阐述了光伏材料、技术创新及运行优化方面的最新进展。研究表明,采用液体冷却的光伏冷却技术平均效率达到83%,热泵冷却为74.2%;相变材料的应用使性能提升了35.8%;混合冷却技术使光伏组件温度平均降低了10°C;纳米流体使光伏效率提高了13.5%;耐热涂层使热效率提升了16.57%。灰尘积聚导致功率下降7.4%–12.35%。本综述旨在提供有关提升光伏系统可持续性和效率的最新策略的深入见解,推动太阳能技术的持续进步。

English Abstract

Abstract The growing demand for clean energy, driven by environmental concerns, has brought renewable energy technologies, particularly photovoltaic (PV) systems, to the forefront of sustainable energy generation. PV technology harnesses solar energy, a virtually unlimited resource, to meet global electricity needs. Despite the advantages of PV systems such as ease of installation, low maintenance costs, and rapid growth efficiency remains a critical factor in maximizing energy output. This review paper presents a comprehensive analysis of state-of-the-art innovations in PV efficiency enhancement techniques, including cooling methods, mobile PV systems, integrated PV systems, material innovations, and optimization strategies. By examining the influence of environmental factors such as panel temperature, dust accumulation, and shading, the paper identifies key challenges and explores cutting-edge solutions to improve PV performance. A detailed exploration of recent advancements in PV materials, technological innovations, and operational optimizations is provided, based on an analysis of over 7,200 research papers published in the past three years. PV cooling techniques achieved an average efficiency of 83 % with liquid cooling and 74.2 % with heat pump cooling. Using phase change materials improved performance by 35.8 %, while hybrid cooling techniques reduced PV temperatures by an average of 10 °C. Nanofluids enhanced PV efficiency by 13.5 %, and heat-resistant coatings increased thermal efficiency by 16.57 %. Dust caused a 7.4 %–12.35 % power reduction. This review aims to offer insights into the latest strategies for enhancing PV sustainability and efficiency, contributing to the continued advancement of solar energy technologies.
S

SunView 深度解读

该综合性光伏效率提升研究对阳光电源SG系列逆变器及储能系统具有重要参考价值。文中提及的液冷技术(效率83%)与阳光电源PowerTitan液冷储能系统技术路线高度契合;温度控制优化可直接应用于PV逆变器热管理设计,提升MPPT算法在高温环境下的追踪精度;纳米流体冷却(效率提升13.5%)为ST系列PCS功率器件散热提供创新方向;灰尘导致的7.4%-12.35%功率损失数据可优化iSolarCloud平台的清洁维护预测模型,提升智能运维效能。