← 返回
一种基于种群分割的多变异差分进化算法用于光伏模型参数提取
An improved population segmentation-based multi-mutation differential evolution algorithm for parameter extraction of photovoltaic models
| 作者 | Yin Xiong · Yimo Luo · Jinqing Peng · Qiangzhi Zhang · Sifan Huang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 327 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An improved differential evolution algorithm named PSMDE was proposed. |
语言:
中文摘要
准确建立光伏(PV)电池的模型对于光伏系统的仿真、评估、控制和优化至关重要。在现有的光伏模型中,二极管电路模型和桑迪亚阵列性能模型(Sandia Array Performance Model)应用较为广泛。然而,这些模型具有非线性、多模态和多变量的特性,使得精确获取模型参数变得十分困难。为解决这一问题,本研究提出了一种基于种群分割的多变异差分进化算法(PSMDE),用于光伏模型的参数提取。该算法采用所提出的分割方法,将种群动态划分为三个子种群,每个子种群采用不同的变异策略进行更新,从而有效应对复杂优化问题。此外,引入了一种参数自适应策略以平衡算法的全局探索与局部开发能力,并设计了重启策略以增强算法逃离局部最优的能力。为评估PSMDE的性能,将其应用于多种类型光伏模型的参数提取,并与8种其他先进的算法进行了对比。结果表明,PSMDE在光伏模型参数提取的准确性、稳定性和收敛速度方面均优于其他算法。进一步地,开展了静态和动态实验测试,以验证该参数提取方法在不同温度和辐照度条件以及真实气象条件下计算组件输出功率的可靠性。实验结果与模拟结果具有良好一致性,具体而言,在测量期间,模拟结果与动态实验结果之间的日平均相对误差介于3.74%至5.91%之间。
English Abstract
Abstract Accurate modeling of photovoltaic (PV) cells is essential for the simulation, evaluation, control, and optimization of PV systems. Among PV models, the diode circuit model and the Sandia Array Performance Model are more extensively used. However, these models exhibit nonlinear, multi-modal, and multi-variable features, making it challenging to accurately obtain model parameters. To address this issue, this study proposed a population segmentation-based multi-mutation differential evolution algorithm (PSMDE) for parameters extraction. In this algorithm, the proposed segmentation method dynamically divided the population into three subpopulations, each updated with different mutation strategies to effectively tackle complex problems. Additionally, a parameter adaptation strategy was introduced to balance the algorithm’s exploration and exploitation capabilities, and a restart strategy was implemented to enhance the algorithm’s ability to escape local optima. To evaluate the performance of PSMDE, the algorithm was used to extract parameters for various types of PV models and compared against 8 other state-of-the-art algorithms. The results demonstrated that PSMDE outperforms other algorithms in terms of accuracy, stability, and convergence speed for the parameter extraction of PV models. Furthermore, the static and dynamic experimental tests were conducted to verify the reliability of this parameter extraction method for calculating the module’s output power under various temperature and irradiance conditions, as well as real weather conditions. The experimental and simulated results showed good agreement. Specifically, the daily mean relative errors between the simulated and dynamic experiment results ranged from 3.74% to 5.91% during the measurement period.
S
SunView 深度解读
该光伏模型参数提取算法对阳光电源SG系列逆变器的MPPT优化具有重要应用价值。精准的光伏电池建模可提升逆变器在复杂工况下的最大功率点跟踪精度,特别是动态光照条件下的功率预测能力(误差3.74-5.91%)。该算法可集成至iSolarCloud平台,用于电站建模仿真与预测性维护,优化ST储能系统的充放电策略。多模态参数寻优思路也可借鉴至SiC/GaN功率器件的控制参数自适应调节,提升系统整体效率与稳定性。