← 返回
电动汽车驱动 SiC器件 工商业光伏 ★ 5.0

碳化硅功率MOSFET在25°C至375°C线性模式下的电热相互作用机制:理论分析、实验验证与封装效应

Electrothermal Interaction Mechanism for SiC Power MOSFET in Linear-Mode Operation From 25°C to 375°C: Theoretical Analysis, Experimental Verification and Packaging Effect

语言:

中文摘要

功率器件的高温能力是提升变换器功率密度的有效途径之一。热失控是线性模式下硅基MOSFET高温运行中的常见问题,但在碳化硅(SiC)器件中的表现尚不明确。本文首次系统研究了SiC功率MOSFET在25°C至375°C结温范围内线性模式下的电热相互作用机制,建立了理论模型,并通过半导体物理仿真与实验验证了其有效性。同时分析了封装参数对高温转换性能的影响,提出一种热敏感度控制方法,有望实现高灵敏度结温检测,为高温及超高温SiC应用提供理论依据与设计指导。

English Abstract

1 Abstract-The high-temperature capability of power devices is one of the effective ways to enhance the power density of converters. Thermal runaway is an acknowledged issue associated with high-temperature operation, typically occurring in industrial applications of Si power MOSFETs under linear mode operation (LMO). However, the occurrence of this runaway in SiC applications remains unclear. This paper, for the first time, investigates the electrothermal interaction of SiC power MOSFETs in LMO across a wide junction temperature range (25°C to 375°C). A formula describing the electrothermal interaction mechanism of LMO is developed and validated through semiconductor physics simulations and experimental results. Additionally, a comparative study of the device’s high-temperature conversion capabilities, influenced by packaging parameters, is conducted. A control method for thermal sensitivity is also introduced, demonstrating significant potential for high-sensitivity junction temperature detection. This research offers a deeper understanding of the electrothermal interactions of SiC power MOSFETs in LMO across a broad temperature range and provides fundamental insights and guidance for high- and ultra-high-temperature SiC applications.
S

SunView 深度解读

该SiC MOSFET高温电热相互作用机制研究对阳光电源功率器件应用具有重要价值。在ST系列储能变流器和SG系列光伏逆变器中,SiC器件的高温运行能力直接影响系统功率密度和可靠性。研究提出的25-375°C全温域理论模型和热敏感度控制方法,可指导阳光电源优化功率模块设计,避免线性模式下的热失控风险。特别是高灵敏度结温检测技术可应用于智能运维系统,实现SiC器件的预测性维护。封装参数优化分析对三电平拓扑中SiC模块的热管理设计具有直接指导意义,有助于提升PowerTitan等大型储能系统在高温环境下的运行稳定性,并为车载OBC等新能源汽车产品的高功率密度设计提供理论支撑。