← 返回
光伏发电技术 储能系统 ★ 5.0

基于相变材料的全息分光聚光光伏-热电混合系统的数值分析与性能研究

Numerical analysis and performance investigation of holographic spectrum-splitting concentrated photovoltaic-thermoelectric hybrid system with phase change material

语言:

中文摘要

摘要 为应对太阳能的波动性并实现太阳光谱的充分利用,本研究提出了一种新型的基于相变材料的全息分光聚光光伏-热电混合系统。具体而言,设计了一种双层体全息光栅分束器,用于将入射太阳辐射中的目标光谱分离,并分别照射至三个空间分离的光伏电池上;同时采用热电模块回收光伏电池产生的余热以进一步发电。在光伏电池与热电模块之间设置含石蜡的储热层,以稳定温度波动,并延长热电模块的工作时间。因此,所提出的系统可显著提高太阳能到电能的转换效率,并实现稳定的电力供应。本研究建立了完整热力学数学模型,并全面开展了能量、㶲以及经济性分析。结果表明,在最优工况下,该系统的总能量效率和总㶲效率分别达到30.2%和32.4%。在所有组件中,热电模块的散热器为效率最低的部件,而光伏电池则表现出最高的㶲损。

English Abstract

Abstract To address the fluctuating nature of solar energy and achieve full spectrum utilization, a novel holographic spectrum-splitting concentration photovoltaic-thermoelectric hybrid system with phase change material is proposed in this study. Specifically, a two-layer volume holographic grating splitter is designed to separate the targeted spectrum from incident solar radiation for three spatially separated photovoltaic cells, while the thermoelectric module is employed to recover the residual heat from photovoltaic cells for electricity generation subsequently. Then, a heat storage layer with paraffin is positioned between the photovoltaic cells and the thermoelectric module to stabilize the temperature fluctuation and prolong the operation time for thermoelectric module. Thus, the conversion efficiency of solar to power can be significantly enhanced and a stable power supply is achieved by the proposed system. A thermodynamic mathematic model is established in this study, and the energy, exergy, and economic analysis are conducted comprehensively. The results show that under optimum conditions, the total energy and exergy efficiency of the proposed system reaches 30.2 % and 32.4 %, respectively. Among all components, the heat sink for thermoelectric module is the most inefficient component and highest exergy destruction is observed in the photovoltaic cells.
S

SunView 深度解读

该光谱分离光伏-温差发电混合系统对阳光电源ST储能系统和SG逆变器产品线具有重要启示。其相变材料热管理方案可优化PowerTitan储能系统的温控策略,提升电池循环寿命。光谱分离技术启发多结电池MPPT算法优化,可提高SG系列逆变器在复杂光谱条件下的转换效率。温差发电余热回收理念可应用于大型地面电站,结合iSolarCloud平台实现热电协同优化。系统30.2%综合效率为储能PCS与逆变器协同控制提供新思路,支撑阳光电源全光谱利用和多能互补技术路线。